Development of Simple Performance Tests Using Laboratory Test Procedures to Illustrate the Effects of Moisture Damage on Hot Mix Asphalt

Jason Bausano¹
Andrea Kvasnak¹
R. Christopher Williams¹, Ph.D.

Final Report

DISCLAIMER

This document is disseminated under the sponsorship of the Federal Highway

Administration (FHWA) in the interest of information exchange. FHWA assumes no
liability for its content or use thereof.

The contents of this report reflect the views of the contracting organization, which is responsible for the accuracy of the information presented herein. The contents may not necessarily reflect the views of FHWA and do not constitute standards, specifications, or regulations.

1. Report No. RC-1521	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle Development of Simple Performance Tests Using Laboratory Test Procedures to Illustrate the Effects of Moisture Damage on Hot Mix Asphalt		5. Report Date April 5, 2006
7. Author(s) Jason Bausano, Andrea Kvasnak, & R. Christopher Williams, Ph.D.		6. Performing Organization Code
9. Performing Organization Name and Address Michigan Technological University Department of Civil and Environmental Engineering 1400 Townsend Drive Houghton, MI 49931		8. Performing Org Report No.
12. Sponsoring Agency Name and Address		10. Work Unit No. (TRAIS)
Federal Highway Administration		11. Contract/Grant No. DTFH61-02-C-00074
		11a. 00-MTU-5
15. Supplementary Notes		13. Type of Report and Period Covered Final Report
16 Aboto of		14. Sponsoring Agency Code

16. Abstract

It has been extensively documented since the late 1970's that moisture damage occurs in hot mix asphalt (HMA) pavements. A variety of test methods are available that test an HMAs' ability to resist moisture sensitivity. There are also some test methods that look at an asphalt binder's moisture susceptibility. The current test method for detecting moisture sensitivity in HMA is American Association of State Highway and Transportation Officials (AASHTO) T283: Resistance of Compacted Bituminous Mixture to Moisture-Induced Damage. Inclusion of this test method in Superpave did not consider the change in specimen size from 100mm to 150mm nor difference in compaction method. The procedures in AASHTO T283 consider the loss of strength due to freeze/thaw cycling and the effects of moisture existing in specimens compared to unconditioned specimens. However, mixtures do not experience such a pure phenomenon. Pavements undergo cycling of environmental conditions, but when moisture is present, there is repeated hydraulic loading with the development of pore pressure in mixtures. Thus, AASHTO T283 does not consider the effect of pore pressure, but rather considers a single load effect on environmentally conditioned specimens.

This report develops moisture susceptibility procedures which would utilize repeated loading test devices (dynamic modulus or asphalt pavement analyzer) of specimens in saturated conditions and be compared to unconditioned specimens in a dry test environment. In addition to HMA mixture testing, a modified dynamic shear rheometer will be used to determine if an asphalt binder or mastic is moisture susceptible. Moisture susceptible criteria was developed using the dynamic complex modulus, asphalt pavement analyzer, and dynamic shear rheometer. Evaluation of AASHTO T283 for 150mm Superpave Gyrtaory compacted specimens is also detailed in this report along with a new criterion.

17. Key Words: Hot Mix Asphalt, Moisture Damage, Dynamic Modulus, and Flow Number	18. Distribution Statement No restrictions. This document is available to the public through the Federal Highway Administration.		
19. Security Classification (report) Unclassified	20. Security Classification (Page) Unclassified	21. No of Pages 366	22. Price

Form DOT F 1700.7 (8-72)

TABLE OF CONTENTS

Executive Summar	·y	1
	ntroduction	
	Susceptibility	
	Objectives	
	State of the Practice for Moisture Testing	
	Project Experimental Plan	
* *	ses for Testing Results	
	of this Document	
	iterature Review	
	tion	
	f Moisture Damage	
	achment	
	placement	
-	ntaneous Emulsification	
	e Pressure	
•	Iraulic Scour	
	rironmental Effects	
	n Theories	
	emical Reaction	
	face Energy and Molecular Orientation	
	chanical Adhesion	
	n Theories	
	Determining Moisture Susceptibility	
	ts on Loose Mixture and Asphalt Binders	
	Methylene Blue Test	
	tatic Immersion Test (AASHTO T182)	
	Tilm Stripping Test (California Test 302)	
	Dynamic Immersion Test	
	Chemical Immersion Test	
	urface Reaction Test	
	Boiling Water Test	
	Rolling Bottle Test	
	Visit I Die Text I Die	
2.5.1.10	Wilhelmy Plate Test and Universal Sorption Device	
2.5.1.11	Pneumatic Pull-Off Test	
2.5.1.12	Dynamic Shear Rheometer	
	ts on Compacted Mixtures	
	mmersion-Compression Test	
	Marshall Immersion Test	
	Moisture Vapor Susceptibility	
	Repeated Pore Water Pressure Stressing and Double-Punch Method.	
	Original Lottman Method	
	Modified Lottman Test (AASHTO T283)	
2.3.2.1 A	AS LIVED 460 / CEUTITICHII-KOOL LEST PTOCEGUTE)	ЭО

2.5.2.8 Texas Freeze/Thaw Pedestal Test	. 31
2.5.2.9 Hamburg Wheel-Tracking Device (HWTD)	. 31
2.5.2.10 Asphalt Pavement Analyzer	
2.5.2.11 Environmental Conditioning System (ECS)	
2.5.2.12 Flexural Fatigue Beam Test with Moisture Conditioning	34
2.5.2.13 ECS/Simple Performance Test Procedures	
CHAPTER 3 Experimental Plan	40
3.1 Experimental Plan	. 40
3.1.1 Phase I Testing – Sensitivity Study	. 40
3.1.2 Phase I – Preliminary Binder Study	. 41
3.1.2.1 Gap Size and Interface Selection	. 42
3.1.3 Phase II Testing	. 44
3.2 Sampled Projects	. 45
3.3 Sampling	. 46
CHAPTER 4 Procedures and Sample Preparation	48
4.1 Materials Collection	
4.1.1 Splitting	. 48
4.1.2 Maximum Theoretical Specific Gravity (G _{mm})	. 49
4.2 Extraction Test	
4.2.1 Superpave Gyratory Compaction	57
4.2.2 Marshall Compaction	. 58
4.3 Compaction of Gyratory and Marshall Specimens	. 58
4.3.1 Bulk Specific Gravity (G _{mb})	
4.4 Bulk Specific Gravity of Gyratory and Marshall Specimens	
4.4.1 Specimen Cutting and Coring	
4.5 Specimen Measurement	
4.6 Volumetrics of Sawed/Cored Test Specimens	. 62
4.7 Testing and Calculations	. 63
4.7.1 Indirect Tensile Strength Testing	. 63
4.7.2 Dynamic Modulus Testing	
4.7.3 Asphalt Pavement Analyzer	
4.7.4 Dynamic Shear Rheometer (DSR)	
CHAPTER 5 Testing Setup	78
5.1 Testing Parameters – Phase I	
5.2 Testing Parameters – Phase II	
5.2.1 AASHTO T283	
5.2.2 Dynamic Modulus	. 78
5.2.2.1 Test Temperatures	
5.2.2.2 Unconfined or Confined Testing	
5.2.2.3 Stress Level	
5.2.3 Testing Parameters – Asphalt Pavement Analyzer	
5.2.4 Testing Parameters – Dynamic Shear Rheometer	
CHAPTER 6 sensitivity Study – Evaluation of AASHTO T283	
6.1 Introduction	
6.2 AASHTO T283 Test Results	
6.3 Analysis of Results	

6.4	Conclusions	99
СНАРТ		
7.1	Introduction	
7.2	Gap Size and Interface Selection	
7.3	Saturation Effects on Asphalt Binders	
7.4	Delay Effects on Asphalt Binders	
7.5	AAA-1 and AAM-1 DSR Testing Conclusions	
СНАРТ	<u> </u>	
8.1	Introduction	
8.2	Experimental Plan	108
8.3	AASHTO T283 Test Results	
8.4	Dynamic Modulus Test Results	112
8.5	DSR Test Results	
8.5	.1 Materials for Field Binder Testing	122
8.5		
8.5		125
8.6	Development of a Moisture Susceptibility Criteria	
8.6	1 ,	
8.6	▼ ±	
8.6	<u> </u>	
8.6		
8.6		
8.6		
8.6	.7 M-59 Brighton	135
8.6	Ç	
8.6	.9 M-53 Detroit	138
8.6		
8.6	.11 M-50Dundee 125mm NMAS	141
8.6	.12 Grand Rapids I-196	142
8.6	.13 Grand Rapids M-45	143
8.6	.14 US-23 Hartland	145
8.6	.15 BL I-96 Howell	146
8.6		
8.6		
8.6		
8.6	.19 Michigan International Speedway US-12	151
8.6		
8.6	.21 M-36 Pinckney	154
8.6	.22 M-84 Saginaw	155
8.6		
8.6	.24 I-75 Toledo	157
8.6	.25 Van Dyke, Detroit	158
8.6	•	
8.6	.27 Summary of Correlation of Normalized Component Differences	160
8.7	Recommended Moisture Susceptibility Criterion	
8.8	Analysis of Results – AASHTO T283	

8.9	Analysis of Results – E* Ratio	165
8.10	Moisture Susceptibility Testing with the Asphalt Pavement Analyzer	170
8.10	0.1 Sensitivity Study	171
8.10	0.2 APA Testing of Field Sampled HMA	172
8.10	0.3 Conditioning of the HMA Specimens for APA Testing	172
8.10		
8.10	0.5 Analysis of All APA Data	174
8.10	0.6 General Linear Model Analysis of APA Data	178
8.10	0.7 APA Analysis Summary	188
8.10	0.8 APA Moisture Criteria	188
8.10		
8.10	0.10 Comparison of Moisture Susceptibility Testing of HMA Mixes	and Asphalt
Bin	ders 192	
8.10	0.11 APA Conclusions	193
8.11	Analysis of Results – DSR	
8.11	1.1 Statistical and Graphical Results of Michigan Binders Categorized	d by Mastic
Typ	pe 198	
8	Effects of Hydrated Lime	199
8	Effects of Silica	
	Comparison of Hydrated Lime to Silica	
8.11	1.2 Conclusions about Filler Effects	
8.12		
CHAPTI	, , , , , , , , , , , , , , , , , , ,	
9.1	Summary	
9.2	Conclusions	
	1 AASHTO T283 – Phase I	
	2 Moisture Testing – Phase II	
9.3	Recommendations	230
APPENI	DIX A JOB MIX FORUMALA'S	205
APPENI	DIX B SPECIMEN VOLUMETRICS	227
APPENI	DIX C SAS OUTPUTS	294
REFERE	ENCES	350

LIST OF TABLES

Table 2.1 Moisture Sensitivity Tests on Loose Samples (Solaimanian et al. 2003) 20
Table 2.2 Moisture Sensitivity Tests on Compacted Samples
Table 2.3 SPT Advantages and Disadvantages (Witczak et al. 2002 and
Table 3.1 Sensitivity Study Experimental Plan for Mix and Aggregate Types40
Table 3.2 Sensitivity Study Experimental Plan for Effect of Compaction Method and
Conditioning Period on Performance
Table 3.3 Properties of Ceramic Discs (Rottermond, 2004)
Table 3.4 Gap Size and Interface Selection Experimental Plan
Table 3.5 Experimental Plan for AAA-1 and AAM-1 Asphalt Binders
Table 3.6 Laboratory Experimental Plan for Phase II
Table 4.1 G _{mm} Mean and Standard Deviation for Each Project
Table 4.2 2-Way ANOVA Comparing Laboratory G _{mm} to Contractor JMF
Table 4.3 Extracted Binder Content versus JMF Binder Content
Table 4.4 2-Way ANOVA Comparing Laboratory Extracted Binder Content to 56
Table 4.5 2-Way ANOVA Comparing Laboratory Extracted Gradation to JMF Gradation 57
Table 4.6 Dynamic Modulus Testing Configurations
Table 4.7 Cycles for Test Sequence
Table 5.1 Rutting Effective Test Temperatures 80
Table 5.2 Fatigue Effective Test Temperatures
Table 5.3 APA Test Temperatures
Table 6.1 Ranking of Projects Based on TSR
Table 6.2 Results of Two-Sample Paired t-Tests
Table 6.3 Goodness of Fit Statistics for Phase I Distributions
Table 7.1 Repeatability of 200μm and 300μm Gap Size

Table 7.2 P-Values of Main and Interaction Effects on Complex Shear Modulus Result	ts104
Table 7.3 P-Values of Condition Comparisons of Original Binders	105
Table 7.4 P-Values Comparing Delay Times	106
Table 8.1 Expanded Experimental Plan for Phase II Projects	
Table 8.2 Laboratory Experimental Plan for Phase II	
Table 8.3 Samples Tested	
8.4 Testing Plan for Each Michigan Binder	
Table 8.5 Summary of Binders Tested	
Table 8.6 Normalized Viscous and Component of Original Binders Standard Deviation	
Summary	•
Table 8.7 Location of Confidence Ellipsoids	
Table 8.8 Correlation Ratings of Normalized Viscous and Elastic Component Differen	
Table 8.9 Goodness of Fit Statistics for Phase II.	
Table 8.10 Two-Sample t-test Results Comparing Dry Strength to Wet Strength	164
Table 8.11 Two-Sample t-test Results Comparing Control E* to Moisture Conditioned	
Table 8.12 Ranking of Projects Based on TSR and E* Ratio	
Table 8.13 Mean Comparison by Condition State	
Table 8.14 Mean Comparison by PG High Temperature	
Table 8.15 Mean Comparisons by Test Temperature	
Table 8.16 Mean Comparisons by NMAS	
Table 8.17 Mean Comparisons by ESAL Level	
Table 8.18 Mean Comparisons by Gradation	
Table 8.19 Summary of Rut Depth Mean Comparison	
Table 8.20 Summary of ANOVA for All of the APA data	
Table 8.21 Regression Parameter Estimated for All APA Data	
Table 8.22 Summary of ANOVA for Condition State 1 APA Data	
Table 8.23 Regression Parameter Estimates for Condition State 1 APA Rut Depth Data	
Table 8.24 Summary of ANOVA for Condition State 2 APA Rut Depth Data	
Table 8.25 Regression Parameter Estimates for Condition State 2 APA Rut Depth Data	
Table 8.26 Summary of ANOVA for Condition State 3 APA Rut Depth Data	
Table 8.27 Regresion Parameter Estimates for Condition State 3 APA Rut Depth Data	
Table 8.28 Summarized Results of Field Mixes Based on Freeze/thaw and Moisture Cr	
	189
Table 8.29 Summary of Rut Depth Failure for all Three Condition States	191
Table 8.30 Rut Depth Ratios of Mixes that Failed the Rut Depth Maximum Criterion.	
Table 8.31 Moisture Susceptible Comparison	
Table 8.32 Comparison of Testing Conditions for All Data	
Table 8.34 Results of Comparing Environmental Testing Conditions by Mastic Percent	
	_
Table 8.35 Results of Hydrated Lime Comparisons Grouped by Percentage of Filler 2	200
Table 8.36 Results of Hydrated Lime Comparing Testing Conditions	
Table 8.37 Ratio $G^*/\sin(\delta)$ of Hydrated Lime to Original Binder	
Table 8.38 Results of Comparing Testing Conditions for Binders with Silica	
Table 8.39 Results of Comparing Testing Conditions of Binders with Silica by Site	
Table 8.40 G*/sin(δ) Ratio of Silica to Original Binder	
Table 8.41 Ratio of G*/sin(δ) Conditioned to Unconditioned Specimens	

Table 8.42 Ratio of $G^*/\sin(\delta)$ of Specimens Tested in a Water Bath to Those Tested i	n an Air
Chamber	. 210
Table 8.43 Ratio of G*/sin(δ) for Conditioned Water Bath Specimens Versus Uncond	litioned Air
Chamber Specimens with Silica	. 211
Table 8.44 Factors with Levels Considered for Statistical Analysis	. 219
Table 8.45 GLM p-values Showing Statistically Significant Variables for TSR	. 221
Table 8.46 LSD Results for AASHTO T283	. 222
Table 8.47 GLM p-values Showing Statistically Significant Variables for E* Ratio	. 223
Table 8.48 LSD Results for E* Ratio	. 223
Table 9.1 Summary of Moisture Damage Prone Materials	. 229

LIST OF FIGURES

Figure 2.1 Haversine Loading Pattern or Stress Pulse for the Dynamic Modulus Tes	
al. 2002)\	37
Figure 2.2 Flow Number Loading (Robinette 2005)	
Figure 3.1 Project Locations	
Figure 3.2 Stockpile Cone Proportions (Robinette 2005)	
Figure 4.1 ISU and Contractor JMF G _{mm}	
Figure 4.2 ISU and Contractor JMF G _{mm}	
Figure 4.3 ISU and Contractor Binder Contents	
Figure 4.4 ISU versus Contractor Binder Contents	56
Figure 4.5 Comparison of #200 Sieve	
Figure 4.6 Changes in Weight of Specimen After G _{mb} Determination	60
Figure 4.7 Air Voids Before and After Sawing/Coring	
Figure 4.8 Modified DSR Base plate	
Figure 4.9 Modified DSR Spindle	72
Figure 4.10 Modified DSR Spindle with Three Holes	73
Figure 4.11 Dimensions Of Modified Spindle(Bausano, 2005)	74
Figure 4.12 View of Spindle Through The Base (Bausano 2005)	
Figure 4.13 View of Modified Spindle From Top Down (Bausano 2005)	75
Figure 4.14 Side View of Modified Spindle (Bausano 2005)	
Figure 4.15 Angled View of Modified Spindle (Bausano 2005)	76
Figure 6.1 M-50 Dundee Average TSR versus Number of Freeze/thaw Cycles with	95%
Confidence Intervals	
Figure 6.2 M-21 St. Johns Average TSR versus Number of Freeze/thaw Cycles with	h 95%
Confidence Intervals	87
Figure 6.3 BL I-96 Howell Average TSR versus Number of Freeze/thaw Cycles with	
Confidence Intervals	
Figure 6.4 M-21 Owosso Average TSR versus Number of Freeze/thaw Cycles with	95%
Confidence Intervals	
Figure 6.5 M-59 Brighton Average TSR versus Number of Freeze/thaw Cycles with	n 95%
Confidence Intervals	
Figure 6.6 I-196 Grand Rapids Average TSR versus Number of Freeze/thaw Cycles	
Confidence Intervals	
Figure 6.7 I-75 Clarkston Average TSR versus Number of Freeze/thaw Cycles wit	95%
Confidence Intervals	
Figure 6.8 Average TSR Results for Traffic Level ≤3,000,000 ESAL's	93
Figure 6.9 Average TSR Results for Traffic Level >3,000,000 ESAL's	93
Figure 6.10 100mm Marshall versus 150mm Superpave at one freeze/thaw cycle	
Figure 6.11 100mm Marshall versus 100mm Superpave at one freeze/thaw cycle	
Figure 6.12 100mm Marshall versus 150mm Superpave at one freeze/thaw cycle	
Figure 8.1 AASHTO T283 Test Results for Traffic Level ≤3,000,000 ESALs with 9	95%
Confidence Intervals	
Figure 8.2 AASHTO T283 Test Results for Traffic Level >3,000,000 ESALs with 9	95%
Confidence Intervals	
Figure 8.3 Dry Strength versus Wet Strength (Pooled Data)	112

Figure 8.4 Dynamic Modulus With Freeze/Thaw Conditioning Test Results for Traffic Level
≤3,000,000 ESALs with 95% Confidence Intervals
Figure 8.5 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level
≤3,000,000 ESALs with 95% Confidence Intervals
Figure 8.6 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level
≤3,000,000 ESALs with 95% Confidence Intervals
Figure 8.7 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level
≤3,000,000 ESALs with 95% Confidence Intervals
Figure 8.8 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level
≤3,000,000 ESALs with 95% Confidence Intervals
Figure 8.9 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level
≤3,000,000 ESALs with 95% Confidence Intervals
Figure 8.10 Dynamic Modulus With Freeze/Thaw Conditioning Test Results for Traffic Level
>3,000,000 ESALs with 95% Confidence Intervals
Figure 8.11 Dynamic Modulus with Freeze/thaw Conditioning Test Results for Traffic Level
>3,000,000 ESALs with 95% Confidence Intervals
Figure 8.12 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level
>3,000,000 ESALs with 95% Confidence Intervals
Figure 8.13 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level
>3,000,000 ESALs with 95% Confidence Intervals
Figure 8.14 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level
>3,000,000 ESALs with 95% Confidence Intervals
Figure 8.15 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level
>3,000,000 ESALs with 95% Confidence Intervals
Figure 8.16 Dry E* versus Wet E* (Pooled Data)
Figure 8.17 Graphical Comparison of Environmental Testing Conditions for All Data 126
Figure 8.18 Complex Shear Modulus
Figure 8.19 Comparison of Elastic and Viscous Percent Changes for Original Binders 131
Figure 8.20 Ann Arbor Confidence Ellipsoid
Figure 8.21 Plot of Normalized Elastic and Viscous Differences
Figure 8.22 Confidence Ellipsoid for Battle Creek Original Binder
Figure 8.23 Plot of Normalized Viscous and Elastic Differences for Battle Creek 135
Figure 8.24 Confidence Ellipsoid of Normalized Elastic and Viscous Differences of Brighton
Original Binder
Figure 8.25 Plot of Viscous and Elastic Component Normalized Differences for Brighton 136
Figure 8.26 Confidence Ellipsoid for Elastic and Viscous Component Differences of Clarkston
Original Binder
Figure 8.27 Plot of Normalized Elastic and Viscous Component Differences for Clarkston
Figure 8.28 Confidence Ellipsoid of Normalized Elastic and Viscous Differences of Original
Binder from Detroit
Figure 8.29 Plot of Normalized Elastic and Viscous Component Differences for Detroit Binder
Eigens 8 20 Confidence Ellipseid for Original Dinder Dunder 10 Own NMAS 140
Figure 8.30 Confidence Ellipsoid for Original Binder Dundee 19.0mm NMAS 140
Figure 8.31 Plot of Normalized Elastic and Viscous Component Differences for Dundee 19.0mm NMAS Binder
NVIAS DIIUCI

Figure 8.32 Confidence Ellipsoid of Dundee 12.5mm NMAS Original Binder	141
Figure 8.33 Plot of Normalized Elastic and Viscous Component Differences for I	Oundee 12.5mm
NMAS Binder	
Figure 8.34 Confidence Ellipsoid of Grand Rapids I-196 Original Binder	143
Figure 8.35 Plot of Normalized Elastic and Viscous Component Differences for O	Grand Rapids I-
196 Binder	143
Figure 8.36 Confidence Ellipsoid for Grand Rapids M-45 Original Binder	144
Figure 8.37 Plot of Normalized Elastic and Viscous Component Differences for O	
M-45 Original Binder	144
Figure 8.38 Confidence Ellipsoid for Hartland Original Binder	145
Figure 8.39 Plot of Normalized Elastic and Viscous Component Differences for I	Hartland Binder
Figure 8.40 Confidence Ellipsoid for Howell Original Binder	147
Figure 8.41 Plot of Normalized Elastic and Viscous Component Differences for I	Howell Binder
	147
Figure 8.42 Confidence Ellipsoid for Levering Original Binder	148
Figure 8.43 Plot of Normalized Elastic and Viscous Component Differences for I	Levering Binder
	148
Figure 8.44 Confidence Ellipsoid for Michigan Ave 19.0mm NMAS Original Bir	nder. 149
Figure 8.45 Plot of Normalized Elastic and Viscous Component Differences for M	Michigan Ave
19.0mm NMAS Binder	149
Figure 8.46 Confidence Ellipsoid for Michigan Avenue 12.5mm NMAS Original	Binder150
Figure 8.47 Overlay Plot of Normalized Elastic and Viscous Component Differer	nces for
Michigan Avenue 12.5mm NMAS Binder	151
Figure 8.48 Confidence Ellipsoid for Michigan International Speedway US-12 On	riginal Binder
Figure 8.49 Overlay Plot of Normalized Elastic and Viscous Component Differer	nces for
Michigan International Speedway US-12 Binder	152
Figure 8.50 Confidence Ellipsoid for Owosso Original Binder	
Figure 8.51 Overlay Plot of Normalized Elastic and Viscous Component Differer	
Binder	
Figure 8.52 Confidence Ellipsoid for Pinckney Original Binder	
Figure 8.53 Overlay Plot of Normalized Elastic and Viscous Component Differer	
Pinckney Binder	
Figure 8.54 Confidence Ellipsoid for Saginaw Original Binder	
Figure 8.55 Overlay Plot of Normalized Elastic and Viscous Component Differer	
Saginaw Binder	
Figure 8.56 Confidence Ellipsoid of St. Johns Original Binder	
Figure 8.57 Overlay Plot of Normalized Elastic and Viscous Component Differer	
Johns Binder	
Figure 8.58 Confidence Ellipsoid for Toledo Original Binder	
Figure 8.59 Overlay Plot of Normalized Elastic and Viscous Component Differer	
Binder	
Figure 8.60 Confidence Ellipsoid of Van Dyke Original Binder	
Figure 8.61 Overlay Plot of Normalized Elastic and Viscous Component Differer	
Dyke Binder	159

Figure 8.62 Lognormal Distribution of TSRs	165
Figure 8.63 Lognormal Distribution of E* Ratios at 0.02 Hz	167
Figure 8.64 Lognormal Distribution of E* Ratios at 0.1 Hz	167
Figure 8.65 Lognormal Distribution of E* Ratios at 1.0 Hz	168
Figure 8.66 Lognormal Distribution of E* Ratios at 5.0 Hz	168
Figure 8.67 Lognormal Distribution of E* Ratios at 10.0 Hz	169
Figure 8.68 Lognormal Distribution of E* Ratios at 25.0 Hz	169
Figure 8.69 Variability Plot of G*/sin(δ)	212
Figure 8.70 Chart of Mean G*/sin(δ) for Neat Binders	213
Figure 8.71 Chart of Mean G*/sin(δ) of Binders with 5% Filler	214
Figure 8.72 Chart of Mean G*/sin(δ) of Binders with 10% Filler	215
Figure 8.73 Chart of Mean G*/sin(δ) of Binders with 20% Filler	216
Figure 8.74 TSR versus Permeability	220
Figure 8.75 TSR versus RAP	220
Figure 8.76 TSR versus Asphalt Content	221

LIST OF ACRONYMS

A	Witczak Predictive Equation Regression Intercept		
APA	Asphalt Pavement Analzyer		
AAPT	Association of Asphalt Paving Technologists		
AASHTO	American Association of State and Highway Transportation Officials		
ASTM	American Society for Testing and Materials		
BSG (G _{mb})	Bulk Specific Gravity		
COV	Coefficient of Variation		
CTAA	Canadian Technical Asphalt Association		
D60	Grain size that corresponds to 60 percent passing		
DSR	Dynamic Shear Rheometer		
E* and E*	Complex Modulus and Dynamic Modulus, respectively		
E' and E"	Elastic and Viscous Modulus, respectively		
ESAL	Equivalent Single Axle Load		
FHWA	Federal Highway Administration		
$\mathbf{F_N}$	Flow Number		
G _b	Asphalt Specific Gravity		
G_{sb}	Aggregate Bulk Specific Gravity		
G _{se}	Aggregate Effective Specific Gravity		
HRB	Highway Research Board		
HMA	Hot Mix Asphalt		
IDT	Indirect Tension Test		
JMF	Job Mix Formula		
LVDT	Linear Variable Differential Transducer		
M-E	Mechanistic-Empirical		
MTSG (G _{mm})	Maximum Theoretical Specific Gravity		
MTU	Michigan Technological University		
NCAT	National Center for Asphalt Technology		
NCHRP	National Cooperative Highway Research Program		
NMAS	Nominal Maximum Aggregate Size		
P _b	Asphalt Binder Content		
Peff	Effective Asphalt Binder Content		
\mathbb{R}^2	Coefficient of Determination		
RAP	Recycled Asphalt Pavement		
RTFO	Rolling Thin Film Oven		
SGC	Superpave Gyratory Compactor		
SHRP	Strategic Highway Research Program		
SSD	Saturate Surface Dry		
SPT	Simple Performance Test		
SST	Superpave Shear Tester		
TAI	The Asphalt Institute		
UTM	Universal Testing Machine		
V	Witczak Predictive Equation Regression Slope		

VFA	Voids Filled with Asphalt
VMA	Voids in the Mineral Aggregate
ϵ_{0}	Strain
ф	Phase Angle
σ_{0}	Stress

Executive Summary

Introduction

The accelerated damage of hot mix asphalt (HMA) due to moisture is of significant concern to transportation agencies and researchers. It is of primary interest in the northern states due to freeze/thaw action during the spring months, but it can be a problem wherever there is the availability of moisture. Currently, there are many tests available to test HMA or binder to determine if it is a mix, a binder, or both are moisture susceptible. Many of these tests have produced varied results and a more mechanistic test is being sought that considers the micromechanical behavior and/or chemical behavior of moisture damage. A significant amount of time and money has been spent on trying to validate these tests and to determine how well the results relate to the field performance of HMA.

Moisture susceptibility is the loss of strength in HMA mixtures due to the effects of moisture. In HMA, there are three components: aggregates, asphalt binder, and air voids. Moisture damage can occur in two ways; loss of adhesion between asphalt binder and aggregate, or the weakening of asphalt mastic in the presence of moisture. Thus, selection of appropriate aggregates (aggregate chemistry) and asphalt binder (binder chemistry) play an important role in deterring moisture damage. Moisture damage can occur from a loss of adhesion between aggregates and binder. This is due to the chemistry of the aggregates. Siliceous aggregate sources are prone to stripping due to a high silica dioxide component. The asphalt binder cannot bond to siliceous aggregate thus when moisture is present and HMA is loaded repeatedly, asphalt binder strips from the aggregate resulting in a loss of adhesion (the binder holds the aggregates together). Moisture damage is a significant concern because it diminishes the performance and service life of HMA pavements resulting in increased maintenance and rehabilitation costs to

highway agencies. Moisture susceptibility is best identified by developing tests that illustrate the effects of moisture damage whether it is on the HMA mixture or asphalt binder. Identification of moisture susceptibility allows the issue to appropriately addressed if necessary.

Literature Review

According to Little and Jones (2003), moisture damage can be defined as the loss of strength and durability in asphalt mixtures due to the effects of moisture. Moisture can damage the HMA in two ways: 1) loss of bond between asphalt cement or mastic and fine and coarse aggregates or 2) weakening of mastic due to the presence of moisture. There are six contributing factors that have been attributed to causing moisture damage in HMA: detachment, displacement, spontaneous emulsification, pore-pressure induced damage, hydraulic scour, and environmental effects (Roberts et al. 1996, Little and Jones 2003). Not one of the above factors necessarily works alone in damaging an HMA pavement, as several of these factors can have a combined affect on damaging a pavement. Therefore there is a need to look at the adhesive interface between aggregate and asphalt and the cohesive strength and durability of the mastic (Graff 1986, Roberts et al. 1996, Little and Jones 2003, Cheng et al. 2003). A loss of the adhesive bond between aggregate and asphalt can lead to stripping and raveling while a loss of cohesion can lead to a weakened pavement that is susceptible to premature cracking and pore pressure damage (Majidzadeh and Brovold 1966, Kandhal 1994, Birgission et al. 2003).

Several tests are available that are conducted on loose HMA mixtures, asphalt binders, or compacted HMA mixtures. The most notable loose mixture test is the boiling water test. Some notable asphalt binder tests are the pull-off tensile strength test and the Wilhelmy plate test.

Some widely used compacted mixture tests are AASHTO T283 (Lottman 1998, Lottman 1992, Tunnicliff and Root 1982, Kennedy et al. 1983, Tunnicliff and Root 1984, Coplantz and

Newcomb 1988, Kennedy and Ping 1991, Stroup-Gardiner and Epps 1992, Epps et al. 2000), Hamburg Wheel Track test device (Aschenbrener et al. 1995), Asphalt Pavement Analyzer (APA) (Cross et al 2000, APA Manual 2002, Mallick et al. 2003, West et al. 2004, Johnston et al 2005), and the Environmental Conditioning System (ECS (Terrel et al. 1994). The current method for evaluating the moisture susceptibility of compacted bituminous mixtures is AASHTO T283. AASHTO T283 is based on the Marshall mix design method, but current research and highway agencies are evaluating the moisture susceptibility of Superpave mixtures based on AASHTO T283. The Superpave volumetric mix design procedure does not include a simple, mechanical test that is analogous to the Marshall stability and flow test criteria. The Superpave mix design system relies on material specifications and volumetric criteria in order to ensure a quality performing mix design. Inclusion of AASHTO T283 in Superpave did not consider the change in specimen size from 100mm to 150mm and resulted in the initiation of NCHRP 9-13 in 1996 (Epps et al. 2000). The researchers concluded that either AASHTO T283 does not evaluate moisture susceptibility or the criterion, the tensile strength ratio (TSR), is incorrectly specified. NCHRP 9-13 examined mixtures that have historically been moisture susceptible and ones that have not. The researchers also examined the current criteria using Marshall and Hyeem compaction, which was considered in the previously mentioned conclusions.

The procedures in AASHTO T283 and NCHRP 9-13 consider the loss of strength due to freeze/thaw cycling and the effects of moisture existing in specimens compared to unconditioned specimens. However, mixtures do not experience such a pure phenomenon. Pavements undergo cycling of environmental conditions, but when moisture is present, there is repeated hydraulic loading with development of pore pressure in mixtures. Thus, AASHTO T283 and the NCHRP

9-13 study do not consider the effect of pore pressure, but rather consider a single load effect on environmentally conditioned specimens. This project has developed moisture susceptibility procedures which utilizes the dynamic loading of specimens in saturated conditions and compared to the results to unconditioned specimens in a dry test environment. The developed test procedure considered the simple performance test, AASHTO T283, and the APA to determine the moisture susceptibility of the mixtures.

Material Collection

During the summer of 2004, when the majority of sampling occurred, it was realized that not all of the mixes could be sampled during the 2004 construction season. Thus, it was decided that previous HMA mixtures that were sampled during the 2000 construction season could be used coupled with additional sampling during the 2005 construction season. The 2000 construction projects that were sampled were stored in a heated, metal building where the material was protected from rain, heat, and snow.

This research was been divided into two phases. Phase I testing was used to determine the number of freeze/thaw cycles that will cause the equivalent damage to AASHTO T283 specimens for different methods of compaction and specimen sizes. Phase II testing of mixes for moisture damage used the results of Phase I for AASHTO T283 testing on 150mm specimens and the results of Phase I and Phase II for dynamic modulus testing. APA testing was based on results from Phase I. In the ensuing sections, the mixture experimental plan and laboratory testing experimental plan are outlined.

The experimental plan considers different mix types, aggregate sources, laboratory test systems, conditioning approaches, and test specimen size. The experimental plan includes two integrated plans: one for the mixes and one for the planned laboratory tests. A sensitivity study

on the effects of specimen size and compaction method was conducted on a limited number of mixes to determine the amount of conditioning that should be needed on larger Superpave compacted specimens to obtain analogous conditioning as AASHTO T283 Marshall mix specimens. Table 1 below outlines the sensitivity study experimental plan.

Table 1 Sensitivity Study Experimental Plan for Mix and Aggregate Types

PHASE 1 MOISTURE			
NMAS (mm)	Traffic Level (ESAL)		
	≤ 3,000,000	>3,000,000	
25.0 or 19.0	Limestone - M50 Dundee	Limestone - M59 Brighton	
	Gravel - M21 St. Johns		
12.5 or 9.5	Limestone - BL96 Howell	Limestone - I-196 Grand Rapids	
	Gravel - M21 Owosso	Slag/Trap Rock - I-75 Clarkston	

The Phase II experimental plan considers different mix types, aggregate sources, and laboratory test systems. Table 2 below outlines the expanded experimental plan.

Table 2 Expanded Experimental Plan for Phase II Projects

PHASE 2 MOISTURE				
NMAS (mm)	Traffic Level (ESAL's)			
	≤ 3,000,000	>3,000,000		
25.0 or 19.0	Limestone - M50 Dundee	Limestone - M59 Brighton		
	Limestone - M36 Pinckney	Limestone - Michigan Ave. Detroit		
	Gravel - M45 Grand Rapids	Limestone - Vandyke Detroit		
	Gravel - M21 St. Johns	Limestone - US23 Hartland		
	Limestone - M84 Saginaw	Gravel - I-75 Levering Road		
12.5 or 9.5	Limestone - BL96 Howell	Limestone - I-196 Grand Rapids		
	Gravel - M21 Owosso	Slag/Gabbro - I-75 Clarkston		
	Gravel - M66 Battle Creek	Gravel - M53 Detroit		
	Limestone - M50 Dundee	Limestone - Michigan Ave. Detroit		
	Limestone - US12 MIS	Gabbro I-75 Toledo (in MI)		
SMA	N/A	Gabbro - I-94 SMA Ann Arbor		

Phase I HMA Results

The Phase I sensitivity study considered the factors affecting the wet strength of a specimen and a new TSR criteria for AASHTO T283 when Superpave compaction method is

employed in lieu of the Marshall compaction method. AASHTO T283 was developed based on 100mm Marshall compacted specimens. With the transition from Marshall compacted specimens to Superpave compacted specimens it was felt that the requirements outlined in AASHTO T283 should be re-evaluated. It was discovered that three freeze/thaw cycles for conditioning is satisfactory when using specimens created via the Superpave method. However, to maintain the same probability level as attained with a TSR value of 80% for 100mm Marshall compacted specimens, a TSR value of 87% and 85% should be used with 150mm and 100mm Superpave compacted specimens, respectively. Alternatively, an 80% TSR for 150mm Superpave specimens corresponds to a TSR to 70% for 100mm Marshall specimens.

Phase I Binder Results

A new moisture susceptibility test was developed using modified DSR parts. Testing was conducted to determine if material interface affects complex shear modulus results. It was determined that material interface does affect complex shear modulus results. Hence, for the new test protocol, ceramic discs would be used to allow for water to access the top of a binder sample in addition to the circumference of a sample. Further testing was conducted to establish an appropriate gap size for a new testing procedure. The gap size selected was 1000µm. Subsequent testing indicated that the new test procedure is sensitive to binder type and addition of filler. The test also appears to be able to distinguish between two filler types, hydrated lime and silica based fillers. Additional testing indicated that statistically different complex shear modulus results were obtained from unsaturated asphalt binder samples versus saturated specimens. However, no additional differences were observed when the samples were moisture saturated and had endured one freeze/thaw cycle. There were also no statistical differences in

complex shear modulus readings when leaving a specimen in a heated water bath anywhere from zero to 20 minutes prior to testing.

Based on laboratory testing and statistical analysis a new test procedure was established in this report. Specimens would be tested first unsaturated with ceramic discs at a gap of 1000µm. Second, the specimens would soak in a water bath for a period of 24 hours at 25°C. After 24 hours of soaking, specimens would be tested again in a DSR using ceramic discs.

Phase II Results

Phase II testing of HMA mixtures outlines moisture susceptibility procedures and preliminary criteria utilizing the dynamic loading on saturated and unconditioned specimens. The two devices used were a loaded wheel tester, an APA, and an unconfined compressive tester, for dynamic modulus testing. Specimens tested in the APA were tested unconditioned in air, saturated and freeze/thaw conditioned tested in air, and saturated and freeze/thaw conditioned tested in water. The proposed criterion is a ratio of conditioned specimen rut depths obtained in a moisture saturated environment divided by unconditioned specimen rut depths obtained in an air chamber accounting for a maximum allowable rut depth. The dynamic modulus test procedure uses a retained dynamic modulus of 60% of conditioned specimens to unconditioned specimens. This initial criterion was derived as it is the same percentage of mixtures that fail the AASHTO T283 criteria of the 21 field mixes. Comparison of mixtures performance ranked via AASHTO T283 and the proposed retained dynamic modulus criteria are considerably different.

The dynamic modulus and APA tests were selected to simulate hydraulic effects occurring in a pavement with the application of a load. In the field, pavements undergo cycling of environmental conditions, but when moisture is present, there is repeated hydraulic loading with the development of pore pressure in mixtures. AASHTO T283 does not consider the effect

of pore pressure, but rather considers a single load effect on environmentally conditioned specimens.

The binders from the mixes tested using AASHTO T283, APA, and dynamic modulus were evaluated using the modified DSR parts and test procedure developed in Phase I. The binders were tested as unconditioned and moisture saturated conditioned. Two fillers, a hydrated lime and silica, were added at three percentage levels to determine if the new test procedure could detect changes to binder and yield differing results for a moisture prone and a moisture resistant materials. The testing results indicated that the test procedure could distinguish between original binders and filler modified binders.

A moisture criterion was developed for the new binder moisture susceptibility test. Initially the Superpave criterion for unaged binders was considered. However, none of the binders examined in this report failed the Superpave minimum criteria of $G^*/\sin(\delta)$ being at least 1.0kPa, however several of the binders did exhibit degradation during testing. During the saturation process many of the binders maintained the original shape prior to saturation, however there were a few binders that tended to spread and even lose small sections of the binder. The binders which did tend to creep during saturation also emitted a visible oil sheen. Specimens displaying creep and oil sheens tended to yield $G^*/\sin(\delta)$ close to the Superpave minimum of 1.0kPa indicating that another criterion should be used for moisture susceptibility testing. The criterion suggested in this report is based on the ability to evaluate the viscous and elastic components.

A number of factors exist that cause or accelerate moisture damage. Test results from the AASHTO T283, dynamic modulus, and APA tests were used to determine the significant statistical factors affecting moisture damage. The factors considered were gradation, nominal

maximum aggregate size (NMAS), traffic level, polymer modification, aggregate type, permeability, asphalt content, fine aggregate angularity (FAA), and recycled asphalt pavement (RAP). In the case of the dynamic modulus testing, frequency was also considered. It appears that the factors affecting AASHTO T283 are polymer modification, aggregate type, permeability, and RAP. The factors affecting dynamic modulus are traffic, polymer modification, aggregate type, permeability, RAP, and frequency. Factors affecting APA rut depth results are temperature and traffic level for conditioned specimens tested in a water bath. For conditioned specimens tested in an air chamber, the factors affecting rut depth are test temperature, polymer modification, binder content, fines to binder ratio, NMAS, and traffic level. It is known that aggregate type, polymer modification, and permeability affect moisture damage. RAP may have been deemed a statistically significant factor since it is highly variable. No two RAP samples will have the same material properties since RAP often is obtained from several pavements.

CHAPTER 1 INTRODUCTION

1.1 Moisture Susceptibility

A number of factors exist that are detrimental to hot mix asphalt (HMA). Moisture damage is a major factor that impacts HMA; which includes the binder and the mixture component. Thus, there is a need for highway agencies to combat moisture susceptibility. In order to first solve this problem, several questions need to be answered:

- What is moisture susceptibility?
- Where does it occur?
- Why does it happen?
- Why is it important? and
- How can we fix it?

Moisture susceptibility is the loss of strength in HMA mixtures due to the effects of moisture. In HMA, there are three main components: aggregates, asphalt binder, and air voids. Moisture damage can occur in two ways; loss of adhesion between asphalt binder and aggregate, or the weakening of asphalt mastic in the presence of moisture. Thus, selection of appropriate aggregates (aggregate chemistry) and asphalt binder (binder chemistry) play an important role in moisture damage. Moisture damage can occur from a loss of adhesion between aggregates and binder. This is due to the chemistry of the aggregates. Siliceous aggregate sources are prone to stripping due to a high silica dioxide component. The asphalt binder cannot bond to these siliceous aggregates; thus when moisture is present and the HMA is loaded repeatedly, the asphalt binder strips from the aggregate resulting in a loss of adhesion (the binder holds the aggregates together). Moisture damage is a significant concern since it can diminish the performance and service life of HMA payements, resulting in increased maintenance and

rehabilitation costs to highway agencies. Moisture susceptibility is best identified by developing tests that illustrate the effects of moisture damage whether it is on HMA mixture or asphalt binder. Identification of moisture susceptible prone materials enables remediation of a mix prior to usage in the field.

1.2 Project Objectives

The objectives of this study were to develop moisture susceptibility test criteria using 150mm Superpave gyratory compacted specimens and binders from these mixes used for procuring 150mm Superpave gyratory compacted specimens. Laboratory testing of HMA included testing specimens according to current American Association of State Highway and Transportation Officials (AASHTO) and American Society of Testing and Materials (ASTM) specifications, the simple performance test using the modified Lottman conditioning procedure, and an asphalt pavement analyzer (APA). Varying durations of freeze/thaw cycling and number of cycles will be detailed in the experimental plan. The test temperature also was used as an experimental factor. Laboratory testing of asphalt binders required the development of a new test procedure. A modified dynamic shear rheometer (DSR) was utilized to determine if an asphalt binder or mastic is moisture susceptible.

1.3 Current State of the Practice for Moisture Testing

The current method for evaluating the moisture susceptibility of compacted bituminous mixtures is based on AASHTO T283. AASHTO T283 was developed using Marshall mix design, yet current research and highway agencies are evaluating the moisture susceptibility of Superpave mixtures with the AASHTO T283 procedure. The Marshall and Superpave mix design methods differ from one another in several respects. The Superpave volumetric mix design procedure does not include a simple mechanical test that is analogous to the Marshall

stability and flow test criteria. The Superpave mix design system relies on material specifications and volumetric criteria in order to ensure a quality performing mix design.

Inclusion of AASHTO T283 in Superpave did not consider the change in specimen size from 100mm to 150mm nor the difference in compaction effort, which resulted in the initiation of NCHRP 9-13 in 1996 (Epps et al. 2000). The researchers concluded that either AASHTO T283 does not evaluate moisture susceptibility or the criterion, the tensile strength ratio (TSR), is incorrectly specified. NCHRP 9-13 examined mixtures that have historically been moisture susceptible and ones that have not.

The procedures in AASHTO T283 and NCHRP 9-13 consider the loss of strength due to freeze/thaw cycling and effects of moisture existing in specimens compared to unconditioned specimens. However, mixture field conditions are not as controlled as laboratory testing.

Pavements undergo cycling of environmental conditions. Pore pressures in the air void system develop in the presence of moisture and dynamic loading. Unfortunately, AASHTO T283 and NCHRP Report 444 do not account for the effects of pore pressure, but rather consider a single load effect on environmentally conditioned specimens. This project developed moisture susceptibility procedures evaluating both mix and binder. The mix test procedures utilized the dynamic loading of specimens to evaluate specimens in saturated conditions and compared those results to unconditioned specimens tested in a dry environment. The test procedures use the simple performance test, AASHTO T283, and an APA to determine the moisture susceptibility of the mixtures. The binder test procedure used a modified dynamic shear rheometer (DSR) to evaluate the moisture susceptibility of binders and mastic.

1.4 Overall Project Experimental Plan

The experimental considered different mix types, aggregate sources, laboratory test systems, and conditioning approaches. The experimental plan included two integrated plans: one for the mixes and one for the planned laboratory tests (both mix and binder). A sensitivity study on the effects of specimen size and compaction method was conducted on a limited number of mixes to determine the amount of conditioning that should occur on larger Superpave compacted specimens.

1.5 Hypotheses for Testing Results

Hypotheses were formulated regarding the factors considered in the experimental plan based upon past research and testing from the literature review. The statistical analyses are outlined in Chapter 4 for the sensitivity study. The following hypotheses were analyzed:

- Which test procedure better simulates moisture damage: AASHTO T283, APA, or the simple performance test?
- Do these HMA mixture tests rank the HMA mixtures the same?
- Can a DSR be utilized to determine if an asphalt binder or mastic is moisture sensitive?
- What kind of criteria should be used to determine if a HMA mixture or asphalt binder is moisture susceptible?

1.6 Contents of this Document

Chapter 2 of this final report discusses past research and studies that have been related to moisture damage or moisture susceptibility. Included is a brief description of the research conducted along with major findings of the study that directly apply to this research. Chapters 3 and 4 outline the experimental plan used and procedures used to sample, prepare, and test specimens for the project. Chapter 5 reviews the mixtures that were used and specimen

preparation in terms of volumetric properties in relation to the job mix formula (JMF). Chapter 6 outlines the testing setup for AASHTO T283, dynamic complex modulus (DCM), APA testing, and DSR testing. Chapter 7 presents the preliminary results of the sensitivity study using AASHTO T283. Chapter 8 relates the results of a preliminary asphalt binder and mastic study using a modified DSR. Chapter 9 presents the evaluation of all the mixes and asphalt binders used in the experimental plan and analyzes the results that were tested using AASHTO T283, the simple performance test, APA, and a modified DSR. Included in this chapter is the evaluation of the hypotheses that were formulated in Chapter 1. Chapter 10 presents the summary, conclusions, and recommendations for further research.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

The accelerated damage of HMA due to moisture is of significant concern to transportation agencies and researchers. It is of primary interest in northern states due to freeze/thaw action during the spring months, but it can be a problem wherever there is the availability of moisture. Currently, there are many tests available to evaluate either HMA or binder to determine if it is a mix problem, a binder problem, or both are moisture susceptible. Many of these tests have produced ambiguous results and a more mechanistic test is being sought that considers the micro-mechanical behavior and/or chemical behavior of moisture damage. A significant amount of time and money has been spent on trying to validate these tests and to determine how well the results relate to the field performance of HMA.

2.2 Causes of Moisture Damage

According to Little and Jones (2003), moisture damage can be defined as the loss of strength and durability in asphalt mixtures due to the effects of moisture. Moisture can damage HMA in two ways: 1) Loss of bond between asphalt cement or mastic and fine and coarse aggregate or 2) Weakening of mastic due to the presence of moisture. There are six contributing factors that have been attributed to causing moisture damage in HMA: detachment, displacement, spontaneous emulsification, pore-pressure induced damage, hydraulic scour, and environmental effects (Roberts et al. 1996, Little and Jones, 2003). Not one of the above factors necessarily works alone in damaging an HMA pavement, as they can work in a combination of processes. Therefore there is a need to look at the adhesive interface between aggregates and asphalt and the cohesive strength and durability of mastics (Graff 1986, Roberts et al. 1996, Little and Jones 2003, Cheng et al. 2003). A loss of the adhesive bond between aggregate and

asphalt can lead to stripping and raveling while a loss of cohesion can lead to a weakened pavement that is susceptible to premature cracking and pore pressure damage (Majidzadeh and Brovold 1966, Kandhal 1994, Birgission et al. 2003).

2.2.1 Detachment

Majidzah and Brovold (1968) describe detachment as the separation of an asphalt film from an aggregate surface by a thin film of water without an obvious break in the film. Adhesive bond energy theory explains the rationale behind detachment. In order for detachment not to happen, a good bond must develop between asphalt and aggregate; this is known as wettability (Scott 1978). As free surface energy of adhesion or surface tension decreases the bond between the aggregate and asphalt increases. Consider a three phase system of aggregate, asphalt, and water. Water reduces the surface energy of a system since aggregate surfaces have a stronger preference for water than asphalt because the asphalt is hydrophilic (Majidzadeh and Brovold 1968). Cheng et al. (2002) calculated adhesive bond strengths by measuring the surface energies of components, the asphalt-aggregate interface, in the presence of water and when under dry conditions.

2.2.2 Displacement

Displacement can occur at a break in the asphalt film at the aggregate surface where water can intrude and displace asphalt from aggregate (Fromm 1974, Tarrer and Wagh 1991). The break in an asphalt film can come from an incomplete coating of aggregate particles, inadequate coating at sharp edges of aggregates, or pinholes in asphalt film. Chemical reaction theory can be used to explain stripping as a detachment mechanism according to Scott (1978). The pH of water at the point of film rupture can increase the process of displacement thereby

increasing the separation of asphalt from aggregate (Scott 1978, Tarrer and Wagh 1991, Little and Jones 2003).

2.2.3 Spontaneous Emulsification

Spontaneous emulsification occurs due to inverted emulsion of water droplets in asphalt cement (Little and Jones 2003). The water diffuses into asphalt cement thereby attaching itself to an aggregate causing a separation between asphalt and aggregate. A loss of adhesive bond occurs between asphalt and aggregate. Clays and asphalt additives can further aggravate the emulsification process (Scott 1978, Fromm 1974, Asphalt Institute 1981).

2.2.4 Pore Pressure

Pore pressure can develop in an HMA pavement due to entrapped water or water that traveled into air void systems in vapor form (Little and Jones, 2003, Kandhal 1994). The pore pressure in an HMA pavement can increase due to repeated traffic loading and/or increases in temperature as well. If an HMA pavement is permeable, then water can escape and flow out. However, if it is not permeable, the resulting increased pore pressure may surpass the tensile strength of an HMA and strips asphalt film from an aggregate, causing microcracking (Majidzadeh and Brovold 1968, Little and Jones, 2003). Microcracking can also be seen in a mastic under repeated loading thus resulting in an adhesive and/or cohesive failure (Little and Jones 2003). The rate of microcracking is accelerated by an increase in pore pressure and the presence of water in HMA. The air void system or permeability of a pavement is an important property in order to control pore pressure in an HMA pavement.

2.2.5 Hydraulic Scour

Hydraulic scour (stripping) occurs at a pavement surface and is a result of repeated traffic tires on a saturated pavement surface. Water is sucked into a pavement by tire rolling action

(Little and Jones 2003). Hydraulic scour may occur due to osmosis or pullback (Fromm 1974). Osmosis is the movement of water molecules from an area of high concentration to an area of low concentration. In the case of HMA, osmosis occurs in the presence of salts or salt solutions in aggregate pores. The movement of these molecules creates a pressure gradient that sucks water through the asphalt film (Mack 1964, Little and Jones 2003). The salt solution moves from an area of high concentration to an area of low concentration. Cheng et al. (2002) show that there is a considerable amount of water that diffuses through the asphalt cement and asphalt mastics can hold a significant amount of water.

2.2.6 Environmental Effects

Factors such as temperature, air, and water have deleterious effects on the durability of HMA (Terrel and Shute 1989, Tandon et al. 1998). Other mechanisms such as high water tables, freeze/thaw cycles, and aging of binder or HMA can affect the durability of HMA (Scherocman et al. 1986, Terrel and Al-Swailmi 1992, Choubane et al. 2000). Other considerations such as construction (segregation and raveling) and traffic are also important.

2.3 Adhesion Theories

Chemical reaction, surface energy, molecular orientation, and mechanical adhesion are four theories used to describe the adhesion characteristics between asphalt and aggregate (Terrel and Al-Swailmi 1992). The above four theories are affected by the following aggregate and asphalt properties: surface tension of asphalt cement and aggregate, chemical composition of asphalt and aggregate, asphalt viscosity, surface texture of aggregates, aggregate porosity, aggregate clay/silt content, aggregate moisture content, and temperature at the time of mixing with asphalt cement and aggregate (Terrel and Al-Swailmi 1992).

2.3.1 Chemical Reaction

The reaction of acidic and basic components of asphalt and aggregate form water insoluble compounds that resist stripping (Terrel and Al-Swailmi 1992). A chemical bond forms that allows an asphalt-aggregate mix to resist stripping. Using aggregates that are basic instead of acidic can lead to better adhesion of asphalt to aggregates (Terrel and Al-Swailmi 1992).

2.3.2 Surface Energy and Molecular Orientation

Surface energy can be described by how well asphalt or water coats aggregate particles (Terrel and Al-Swailmi 1992). Water is a better wetting agent because of it's lower viscosity and lower surface tension than asphalt (Little and Jones 2003). Using surface energy theory to calculate adhesive bond energies between asphalt and aggregate and cohesive strength of a mastic is rather complex and will be discussed further under the *Tests on Loose Mixtures* in Section 2.5.1.

The structuring of asphalt molecules at an asphalt-aggregate interface is molecular orientation. The adhesion between asphalt and aggregate is facilitated by a surface energy reduction at the aggregate surface where asphalt is adsorbed onto a surface (Terrel and Al-Swailmi 1992, Little and Jones 2003).

2.3.3 Mechanical Adhesion

Mechanical adhesion is a function of various aggregate physical properties such as surface texture, porosity, absorption, surface coatings, surface area, and particle size (Terrel and Al-Swailmi 1992, Little and Jones 2003). In short, an aggregate with desirable properties that will not show a propensity to moisture damage within an HMA is wanted.

2.4 Cohesion Theories

According to Little and Jones (2003), cohesion is developed in a mastic and it is influenced by the rheology of the filled binder. The cohesive strength of a mastic is a function of the interaction between the asphalt cement and mineral filler, not just of the individual components alone. The cohesive strength of a mastic is weakened due to the presence of water through increased saturation and void swelling or expansion (Terrel and Al-Swailmi 1992, Little and Jones 2003). Cheng et al. (2002) showed that the cohesive strength can be damaged in various mixtures by the diffusion of water into asphalt mastics.

2.5 Tests for Determining Moisture Susceptibility

Moisture damage has been a concern to highway agencies and asphalt researchers for many years as it can lead to a shortened pavement life. Therefore, there is a need to develop a test method that predicts and/or identifies the moisture susceptibility of HMA. Table 2.1 lists tests on loose mixtures while Table 2.2 lists tests on compacted mixtures. All of these tests predict laboratory moisture susceptibility, but lack the reliability of predicting moisture damage in the field. The preceding sections will give a brief description of each test method and how well it predicts field moisture damage.

2.5.1 Tests on Loose Mixture and Asphalt Binders

The tests on loose mixtures are conducted on only asphalt coated particles in the presence of water. Examples of these tests are listed in Table 2.1. The two biggest advantages of these tests are conducting simplicity and inexpensive nature in comparison compacted specimen test expenses. Another significant advantage is the use of simple equipment and procedures to conduct experiments (Solaimanian et al. 2003).

 Table 2.1 Moisture Sensitivity Tests on Loose Samples (Solaimanian et al. 2003)

Test Method	ASTM	AASHTO	Other
Mothylana Plua			Technical Bulletin 145, International
Methylene Blue			Slurry Seal Association
Film Stripping			California Test 302
Static Immersion	D1664*	T182	
Dynamic Immersion			No standard exists
Chemical			Standard Method TMH1 (Road
Immersion			Research Laboratory 1986, England)
Quick Bottle			Virginia Highway and Transportation
Quick Bottle			Research Council (Maupin 1980)
Boiling	D3625		Tex 530-C
Doming	D3023		Kennedy et al. 1984
Rolling Bottle			Isacsson and Jorgensen, Sweden, 1987
Net Adsorption			SHRP-A-341 (Curtis et al. 1993)
Surface Energy			Thelen 1958, HRB Bulletin 192
Surface Energy			Cheng et al., AAPT 2002
Pneumatic Pull-Off			Youtcheff and Aurilio (1997)

^{*}No longer available as ASTM standard.

2.5.1.1 Methylene Blue Test

The methylene blue test is used to identify "dirty" aggregates which contain harmful clays and dust (Solaimanian et al. 2003). If dust or harmful clays are on aggregate particles, an asphalt binder will not be able to fully coat aggregate particles, and thus a potential for stripping may occur in the HMA. This test is used to identify aggregates that contain clays or dust. Since no asphalt is used, this test cannot measure a potential for HMA stripping.

2.5.1.2 Static Immersion Test (AASHTO T182)

A sample of HMA mix is cured for 2 hours at 60°C before being placed in a jar and covered with water. The jar is left undisturbed for 16 to 18 hours in a water bath at 25°C. Again the amount of stripping is visually estimated by looking at the HMA sample in the jar. The results of this test are given as either less than or greater than 95% of an aggregate surface is stripped (Solaimanian et al. 2003).

2.5.1.3 Film Stripping Test (California Test 302)

The film stripping test is a modified version of the static immersion test (AASHTO T182). Basically, a loose mixture of asphalt coated aggregates are placed in a jar filled with water. The mix is aged in an oven at 60°C for 15 to 18 hours before being placed in a jar to cool. The jar with loose mix is rotated at 35 revolutions per minute (rpm) for 15 minutes to stir up the mix. Baffels in a jar stir up the mix to accelerate the stripping process. After 15 minutes the sample is removed, the loose mixture is viewed under a fluorescent light, and the %age of stripping is estimated. The results of this test are given in %age of total aggregate surface stripped (Solaimanian et al. 2003).

2.5.1.4 Dynamic Immersion Test

The dynamic immersion test (DIM) is similar to the static immersion test, but the DIM test is used to accelerate the stripping effect. Loose mixture is agitated in a jar filled with water in order to produce a dynamic effect (Solaimanian et al. 2003). Again, the results show that as the period of agitation increases, the amount of stripping increases, however the tests fail to simulate pore pressure and traffic which is the case with all loose mixture tests.

2.5.1.5 Chemical Immersion Test

A loose sample of asphalt coated aggregate is placed in boiling water while increasing the amount of sodium carbonate. The concentration of sodium carbonate is slowly increased until stripping occurs and the concentration of sodium carbonate is recorded. The recorded number is referred to as the Riedel and Weber (R&W) number. Zero refers to distilled water, 1 refers to 0.41 g of sodium carbonate and 9 refers to the highest concentration of sodium carbonate or 106 g. The sample is removed from the water and sodium carbonate solution and examined for stripping (Solaimanian et al. 2003).

2.5.1.6 Surface Reaction Test

A major problem with the tests reviewed in the previous section is the dependence on visual observation for identifying stripping. The surface reaction test allows a researcher to quantify the level of stripping on loose asphalt mixtures. This procedure was developed by Ford et al. (1974). The surface reaction test evaluates the reactivity of calcareous or siliceous aggregates and reaction response to the presence of highly toxic and corrosive acids. As part of the chemical reaction, gas is emitted, which generates a pressure and this pressure is proportional to the aggregate surface area (Solaimanian et al. 2003). This test is based on the premise that different levels (severity) of stripping result in exposed surface areas of aggregates.

2.5.1.7 Boiling Water Test

Several versions of a boiling water test have been developed by various state agencies including one from the Texas State Department of Highways and Public Transportation (Kennedy et al. 1983 and 1984). A visual inspection of stripping is made after the sample has been subjected to the action of water at an elevated temperature for a specified time (Kennedy et al. 1983 and 1984, Solaimanian et al. 2003). This test identifies mixes that are susceptible to moisture damage, but it does not account for mechanical properties nor include the effects of traffic (Kennedy et al. 1983 and 1984; Solaimanian et al. 2003).

2.5.1.8 Rolling Bottle Test

Isacsson and Jorgenson developed the Rolling Bottle Test in Sweden in 1987. The test is similar to the DIM in that aggregate chips are coated in asphalt and placed in a glass jar filled with water. The glass jar is rotated to agitate loose HMA. A visual inspection is completed to note how much asphalt has been stripped from aggregates (Solaimanian et al. 2003).

2.5.1.9 Net Adsorption Test

The Strategic Highway Research Program (SHRP) developed a test called the net adsorption test (NAT) in the early 1990's and is documented under SHRP-A-341 (Curtis et al. 1993). This test examines the asphalt-aggregate system and its affinity and compatibility (Solaimanian et al. 2003). In addition, this test also evaluates the sensitivity of the asphalt-aggregate pair. In terms of other tests, the NAT yields mixed results when compared to the indirect tensile test with moisture conditioned specimens (Solaimanian et al. 2003). The NAT was modified by researchers at the University of Nevada - Reno and the results were correlated with the environmental conditioning chamber (ECS) (Scholz et al. 1994). The water sensitivity of a binder as estimated by NAT showed little or no correlation to wheel-tracking tests on the mixes according to SHRP-A-402 (Scholz et al. 1994).

2.5.1.10 Wilhelmy Plate Test and Universal Sorption Device

Researchers at Texas A&M University lead in investigating cohesive and adhesive failure models based on surface energy theory and a moisture diffusion model based on results from the Universal Sorption Device (USD) (Cheng et al. 2003). The principle behind surface energy theory is that the surface energy of an asphalt and aggregate is a function of the adhesive bond between asphalt and aggregate and the cohesive bonding within an asphalt (Solaimanian et al. 2003). The Wilhelmy plate is used to determine the surface free energy of an asphalt binder where the dynamic contact angle is measured between asphalt and a liquid solvent (Cheng et al. 2003, Solaimanian et al. 2003). The USD test is used to determine the surface free energy of an aggregate (Cheng et al. 2003, Solaimanian et al. 2003). The surface free energy is then used to compute the adhesive bond between an asphalt binder and aggregate. Cheng et al. (2002) showed that the adhesive bond per unit area of aggregate is highly dependent on the aggregate

and asphalt surface energies. Also, this test shows that stripping occurs because the affinity of an aggregate for water is much greater than that for asphalt thus weakening the bond at the asphalt-aggregate interface (Cheng et al. 2002).

Current research at Texas A & M University (Bhasin et al. 2006, Masad et al. 2006) has shown that the moisture resistance of asphalt-aggregate combinations depends on surface energies of asphalt binders and aggregates. The factors considered are film thickness, aggregate shape characteristics, surface energy, air void distribution and permeability. The ratio of adhesive bond energy under dry conditions to adhesive bond energy under wet conditions can be used to identify moisture susceptible asphalt-aggregate combinations and a ratio of 0.80 should be used as a criterion to separate good and poor combinations of materials. Dynamic mechanical analysis tests were conducted to evaluate a mixtures ability to accumulate damage under dry and moisture conditions. A mechanistic approach using a form of the Paris law was used for the evaluation of moisture damage. The mechanical properties are influenced by aggregate gradation, aggregate shape characteristics, and film thickness. This approach captures the influence of moisture on crack growth and is able to distinguish good and poor performing HMA mixtures.

2.5.1.11 Pneumatic Pull-Off Test

Another method for evaluating the moisture susceptibility of asphalt binders is the pneumatic pull-off test. The properties being measured by this test are the tensile and bonding strength of a bitumen applied to a glass plate as a function of time while being exposed to water (Solaimanian et al. 2003). Test results by Youtcheff et al. (1998) showed that soak time appears to be an important factor. Additional results using the pneumatic pull-off test indicate that

asphaltenes provide the viscosity structure and is disrupted by the presence of water while the maltenes provide the resistance to moisture damage (Youtcheff et al. 1997).

2.5.1.12 Dynamic Shear Rheometer

Modified DSR parts were incorporated into a DSR by Rottermond (2004) to establish a moisture susceptibility test for asphalt binders. Rottermond extended the work conducted by Scholz and Brown (1996). Kanitpong and Bahia (2003) evaluated the effects of antistrip agents using ceramic interfaces and a DSR. The modified DSR parts were a base plate and spindle. A ceramic disc was inset in a base plate and spindle. A test specification was not developed, but several gap sizes were evaluated.

2.5.2 Tests on Compacted Mixtures

Tests conducted on compacted mixtures include laboratory compacted specimens, field cores, and/or slabs compacted in a laboratory or taken from the field. Table 2.2 provides moisture sensitivity tests which have been performed on compacted specimens. From these tests, physical, fundamental/mechanical properties can be measured while accounting for traffic/water action and pore pressure effects (Solaimanian et al. 2003). Some disadvantages of conducting tests on compacted mixtures are the expensive laboratory testing equipment, longer testing times, and potentially labor intensive test procedures.

Table 2.2 Moisture Sensitivity Tests on Compacted Samples (Solaimanian et al. 2003)

Test Method	ASTM	AASHTO	Other
Moisture Vapor			California Test 307
Susceptbility			Developed in late 1940's
Immersion-	D1075	T165	ASTM STP 252 (Goode 1959)
Compression Marshal Immersion			Ctront 1006
			Stuart 1986
Freeze/thaw Pedestal Test			Kennedy et al. 1982
Onicinal Latteran			NCHRP Report 246 (Lottman 1982);
Original Lottman Indirect Tension			Transportation Research Record 515
indirect Tension			(1974)
Modified Lottman		T292	NCHRP Report 274 (Tunnicliff and
Indirect Tension		T283	Root 1984), Tex 531-C
Tunnialiff Dags	D4967		NCHRP Report 274 (Tunnicliff and
Tunnicliff-Root	D4867		Root 1984)
ECS with Resilient			SHRP-A-403 (Al-Swailmi and Terrel
Modulus			1994)
Hamburg Wheel			1993
Tracking			Tex-242-F
Asphalt Pavement			Pavement Technology Inc., Operating
Analyzer			Manual
ECS/SPT			NCHRP 9-34 (2002-03)
Multiple			No standard exists
Freeze/thaw			no standard exists

2.5.2.1 Immersion-Compression Test

The immersion-compression test (ASTM D1075 and AASHTO T165-155) is among the first moisture sensitivity tests developed based on testing 100mm diameter compacted specimens. A more detailed explanation of this test can be reviewed in ASTM Special Technical Publication 252 (Goode 1959). This test consists of compacting two groups of specimens: a control group and a moisture conditioned group at an elevated temperature (48.8°C water bath) for four days (Roberts et al. 1996). The compressive strength of the conditioned and control group are then measured (Roberts, et al. 1996). The average strength of the conditioned specimens over that of the control specimens is a measure of strength lost due to moisture

damage (Solaimanian et al. 2003). Most agencies specify a minimum retained compressive strength of 70%.

2.5.2.2 Marshall Immersion Test

The procedure for producing and conditioning two groups of specimens is identical to the immersion-compression test. The only difference is, the Marshall stability test is used as the strength parameter as opposed to the compression test (Solaimanian et al. 2003). A minimum retained Mashall stability number could not be found in the literature.

2.5.2.3 Moisture Vapor Susceptibility

The moisture vapor susceptibility test was developed by the California Department of Transportation (California Test Method 307). A California kneading compactor is used to compact two specimens. The compacted surface of each specimen is sealed with an aluminum cap and a silicone sealant is applied to prevent the loss of moisture (Solaimanian, et al. 2003). After the specimens have been conditioned at an elevated temperature and suspended over water, testing of the specimens commences. The Hveem stabilometer is used to test both dry and moisture conditioned specimens. A minimum Hveem stabilometer value is required for moisture conditioned specimens, which is less than that required for dry specimens used in the mix design (Solaimanian et al. 2003).

2.5.2.4 Repeated Pore Water Pressure Stressing and Double-Punch Method

The repeated pore water pressure stressing and double punch method was developed by Jimenez at the University of Arizona (1974). This test accounts for the effects of dynamic traffic loading and mechanical properties. In order to capture the effects of pore water pressure, the specimens are conditioned by a cyclic stress under water. After the specimen has undergone the pore pressure stressing the tensile strength is measured using the double punch equipment.

Compacted specimens are tested through steel rods placed at either end of the specimen in a punching configuration.

2.5.2.5 Original Lottman Method

The original Lottman test was developed at the University of Idaho by Robert Lottman (1978). The laboratory procedure consists of compacting three sets of 100mm diameter by 63.5mm Marshall specimens to be tested dry or under accelerated moisture conditioning (Lottman et al. 1974). Below are the following laboratory conditions for each of the groups:

- Group 1: Control group, dry;
- Group 2: Vacuum saturated with water for 30-minutes; and
- Group 3: Vacuum saturation followed by freeze cycle at -18°C for 15- hours and then subjected to a thaw at 60°C for 24-hours (Lottman et al. 1974).

After the conditioning phase the indirect tensile equipment is used to conduct tensile resilient modulus and tensile strength of conditioned and dry specimens. All specimens are tested at 13°C or 23°C at a loading rate of 1.65mm/min. The severity of moisture damage is based on a ratio of conditioned to dry specimens (TSR) (Lottman et al. 1974, Lottman 1982). A minimum TSR value of 0.70 is recommended (NCHRP 246). Laboratory compacted specimens were compared to field cores and plotted against each other on a graph. The laboratory and field core specimens line up fairly close to the line of equality.

2.5.2.6 Modified Lottman Test (AASHTO T283)

"Resistance of Compacted Bituminous Mixture to Moisture Induced Damage" AASHTO T283, is the most commonly used test method for determining moisture susceptibility of HMA. This test is similar to the original Lottman test with only a few exceptions which are:

• Two groups, control versus moisture conditioned,

- Vacuum saturation until a saturation level of 70% to 80% is achieved, and
- Test temperature and loading rate change to 50mm/min at 25°C.

A minimum TSR value of 0.70 is recommended (Roberts et al., 1996). AASHTO T283 was adopted by the Superpave system as the moisture test method of choice even though AASHTO T283 was developed for Marshall mixture design. State highway agencies have reported mixed results when using AASHTO T283 and comparing the results to field performance (Stroup-Gardiner et al. 1992, Solaimanian et al. 2003). NCHRP Project 9-13 looked at different factors affecting test results such as types of compaction, diameter of specimen, degree of saturation, and freeze/thaw cycles. Conclusions from looking at the previously mentioned factors can be seen in the NCHRP 9-13 report (Epps et al. 2000). The researchers concluded that either AASHTO T283 does not evaluate moisture susceptibility or the criterion, TSR, is incorrectly specified. NCHRP 9-13 examined mixtures that have historically been moisture susceptible and ones that have not. The researchers also examined the current criteria using Marshall and Hveem compaction. A recent study at the University of Wisconsin found no relationship exists between TSR and field performance in terms of pavement distress index and moisture damage (surface raveling and rutting) (Kanitpong et al. 2006). Additional factors such as production and construction, asphalt binder and gradation play important roles. Mineralogy does not appear to be an important factor in relation to pavement performance.

2.5.2.7 ASTM D4867 (Tunnicliff-Root Test Procedure)

"Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures," ASTM D4867 is comparable to AASHTO T283. The only difference between AASHTO T283 and ASTM D4867 is that the curing of loose mixture at 60°C in an oven for 16 hours is

eliminated in ASTM D4867. A minimum TSR of 0.70 to 0.80 are specified by highway agencies (Roberts et al. 1996).

2.5.2.8 Texas Freeze/Thaw Pedestal Test

The water susceptibility test was developed by Plancher et al. (1980) at Western Research Institute but was later modified into the Texas freeze/thaw pedestal by Kennedy et al. (1983). Even though this test is rather empirical in nature, it is fundamentally designed to maximize the effects of bond and to minimize the effects of mechanical properties such as gradation, density, and aggregate interlock by using a uniform gradation (Kennedy et al. 1983). An HMA briquette is made according to the procedure outlined by Kennedy et al. (1982). The specimen is then placed on a pedestal in a jar of distilled water and covered. The specimen is subjected to thermal cycling and inspected each day for cracks. The number of cycles to induce cracking is a measure of the water susceptibility (Kennedy et al. 1983). The benefits of running this test are some key failures can be seen:

- Bond failure at the asphalt-aggregate interface (stripping) and
- Fracture of the thin asphalt films bonding aggregate particles (cohesive failure) by formation of ice crystals (Solaimanian et al. 2003).

2.5.2.9 Hamburg Wheel-Tracking Device (HWTD)

The Hamburg wheel tracking device was developed by Esso A.G. and is manufactured by Helmut-Wind, Inc. of Hamburg, Germany (Aschenbrener et al. 1995, Romero and Stuart 1998). Two samples of hot mix asphalt beams with each beam having a geometry of 26mm wide, 320mm long, and 40mm thick. This device measures the effects of rutting and moisture damage by running a steel wheel over the compacted beams immersed in hot water (typically 50°C) (Aschenbrener et al. 1995). The steel wheel is 47mm wide and applies a load of 705N while

traveling at a maximum velocity of 340mm/sec in the center of the sample. A sample of HMA is loaded for 20,000 passes or 20mm of permanent deformation occurs (Aschenbrener et al. 1995). Some important results the HWTD gives are:

- Postcompaction consolidation: Deformation measured after 1,000 wheel passes;
- Creep Slope: Number of wheel passes to create a 1 mm rut depth due to viscous flow;
- Stripping Slope: Inverse of the rate of deformation in the linear region of the deformation curve; and
- Stripping Inflection Point: Number of wheel passes at the intersection of the creep slope and stripping slope (Aschenbrener et al. 1995).

2.5.2.10 Asphalt Pavement Analyzer

The APA is a type of loaded wheel test. Rutting, moisture susceptibility, and fatigue cracking can all be examined with an APA. The predecessor to the APA is the Georgia Loaded Wheel Tester (GLWT). Similar to the GLWT, an APA can test either cylindrical or rectangular specimens. Using either specimen geometry, the conditioned and unconditioned samples are subjected to a steel wheel that transverses a pneumatic tube, which lies on top of an asphalt sample. As the wheel passes back and forth over the tube, a rut is created in a sample.

Numerous passes lead to a more defined rut and eventually, stress fractures can begin to manifest as cracks. Modeling these ruts and cracks helps to predict how different combinations of aggregate and binder for given criteria such as temperature and loading, will react under varying circumstances. The conditioning of a sample is based upon the characteristic an APA is testing.

One of the main differences between an APA and a GLWT is an APA's ability to test samples

under water as well as in air. Testing submerged samples allows researchers to examine moisture susceptibility of mixes (Cooley et al. 2000).

An APA results are comparable to field data. A study that compared WesTrack, a full-scale test track, data with APA results found a strong relationship between field data and laboratory data (Williams and Prowell 1999). An additional study at the University of Tennessee revealed that an APA sufficiently predicted the potential for rutting of 30 HMAs commonly used in Tennessee (Jackson and Baldwin 1999).

To test moisture susceptible HMA samples, specimens are created in the same manner as the specimens for testing rutting potential without moisture. The samples are placed in an APA, which has an inner box that can be filled with water. The samples are completely submerged at all times during testing; therefore effects of evaporation do not need to be taken into account. The water bath is heated to a desired test temperature and the air in the chamber is also heated to the same desired test temperature.

2.5.2.11 Environmental Conditioning System (ECS)

The ECS was developed by Oregon State University as part of the SHRP-A-403 and later modified at Texas Technological University (Alam et al. 1998). The ECS subjects a membrane encapsulated HMA specimen that is 102mm in diameter by 102mm in height to cycles of temperature, repeated loading, and moisture conditioning (SHRP-A-403 1992, Al-Swailmi et al. 1992, Al-Swailmi et al. 1992, Terrel et al. 1993). Some important fundamental material properties are obtained from using an ECS. These properties are resilient modulus (M_R) before and after conditioning, air permeability, and a visual estimation of stripping after a specimen has been split open (SHRP-A-403, 1992). One of the significant advantages of using an ECS is the ability to influence the HMA specimens to traffic loading and the resulting effect of pore water

pressure (Solaimanian et al. 2003) which is close to field conditions. The downfall of the test is, it does not provide a better relationship to field observation than what was observed using AASHTO T283. Also, AASHTO T283 is much less expensive to run and less complex than the ECS.

2.5.2.12 Flexural Fatigue Beam Test with Moisture Conditioning

Moisture damage has been known to accelerate fatigue damage in pavements. Therefore, conditioning of flexural fatigue beams was completed by Shatnawi et al. (1995). Laboratory compacted beams were prepared from HMA sampled at jobs and corresponding field fatigue beams were cut from the pavement. The conditioning of the beams is as follows:

- Partial vacuum saturation of 60% to 80%;
- Followed by 3 repeated 5-hour cycles at 60°C followed by 4-hours at 25°C while remaining submerged; and
- One 5-hour cycle at -18°C (Shatnawi et al. 1995).

The specimens are then removed from a conditioning chamber and tested according to AASHTO TP8. Initial stiffness and fatigue performance were affected significantly by conditioning the specimens (Shatnawi et al. 1995).

2.5.2.13 ECS/Simple Performance Test Procedures

As a result of NCHRP Projects 9-19, 9-29, and 1-37; new test procedures such as simple performance tests (SPTs) are being evaluated. According to Witczak et al. (2002), an SPT is defined as "A test method(s) that accurately and reliably measures a mixture response or characteristic or parameter that is highly correlated to the occurrence of pavement distress (e.g. cracking and rutting) over a diverse range of traffic and climatic conditions." The mechanical tests being looked at are the dynamic modulus $|E^*|$, repeated axial load (F_N), and static axial

creep tests (F_T). These tests are conducted at elevated temperatures to determine a mixtures resistance to permanent deformation. The dynamic modulus test is conducted at an intermediate and lower test temperature to determine a mixtures susceptibility to fatigue cracking. Witczak et al. (2002) have shown that dynamic modulus, flow time, and flow number yield promising correlations to field performance. The advantages and disadvantages can be seen in Table 2.3 from the work of Brown et al. (2001) and Witczak et al. (2002).

Table 2.3 SPT Advantages and Disadvantages (Witczak et al. 2002 and Brown et al. 2001)

Test	Parameter	Test Condition	Model	\mathbb{R}^2	Se/Sy	Advantages	Disadvantages
Dynamic Modulus	E*/sinф	Sinusoidal Linear 130°F 5 Hz	Power	0.91	0.310	Direct input for 2002 Pavement Design Guide Not forced to use master curves Easily linked to established regression equations Non destructive tests	Coring and sawing Arrangement of LVDTs Confined testing gave poor results Need further study of reliability of confined open graded specimens Equipment is more complex Difficult to obtain 1.5:1height-to-diameter ratio specimens in lab
Repeated Loading (Flow Number)	F_N	Unconfined 130°F Various Frequencies	Power	0.88	0.401	Better simulates traffic conditions	Equipment is more complex Restricted test temperature and load levels does not simulate field conditions Difficult to obtain 1.5:1height-to-diameter ratio specimens in lab

NCHRP 9-34 is currently looking at the aforementioned tests along with the ECS to develop new test procedures to evaluate moisture damage (Solaimanian et al. 2003).

Solaimanian et al. (2006) reported that the results of the Phase I and Phase II testing of NCHRP 9-34 show that the dynamic complex modulus (DCM) test should be coupled with the ECS for moisture sensitivity testing. Some preliminary findings out of NCHRP 9-34 show that the ECS/DM test appear to separate good performing mixes from poor performing mixes in the field compared with TSR testing from ASTM D4867. The dynamic complex modulus is determined by applying a uniaxial sinusoidal vertical compressive load to an unconfined or confined HMA cylindrical sample as shown in Figure 2.1.

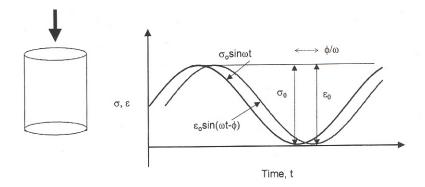


Figure 2.1 Haversine Loading Pattern or Stress Pulse for the Dynamic Modulus Test (Witczak et al. 2002)\

The stress-to-strain relationship under a continuous sinusoidal load pattern for a liner viscoelastic material is defined by the complex modulus (dynamic modulus), E*.

Mathematically, E* is equal to the maximum peak dynamic stress (σ_0) divided by the peak recoverable strain (ε_0):

$$|E^*| = \frac{\sigma_o}{\varepsilon_o}$$
 (equation 2.1)

The real and imaginary parts of the dynamic modulus can be written as

$$E^* = E' + iE''$$
 (equation 2.2)

The previous equation shows that E^* has two components; a real and an imaginary component. E' is referred to as the storage or elastic modulus component, while E'' is referred to as the loss or viscous modulus. The angle by which the peak recoverable strain lags behind the peak dynamic stress is referred to as the phase angle, ϕ . The phase angle is an indicator of the viscous properties of the material being evaluated.

Mathematically, this is expressed as

$$E^* = |E^*| \cos \phi + i |E^*| \sin \phi \qquad (equation 2.3)$$

$$\phi = \frac{t_i}{t_p} \times 360$$
 (equation 2.4)

where

 t_i = time lag between a cycle of stress and strain(s),

 t_p = time for a stress cycle(s), and

i = imaginary number.

For a purely viscous material, the phase angle is 90°, while for a purely elastic material the phase angle is 0° (NCHRP 465 2002). The dynamic modulus, a measurable, "fundamental" property of an HMA mixture is the relative stiffness of a mix. Mixes that have a high stiffness at elevated temperatures are less likely to deform. But, stiffer mixes at an intermediate test temperature are more likely to crack for thicker pavements (Shenoy and Romero 2002). Therefore, the dynamic modulus test is conducted at intermediate and elevated temperatures to evaluate the fatigue properties and the rutting propensity of HMA.

The dynamic creep test (i.e. repeated load test, flow number test) is based on the repeated loading and unloading of an HMA specimen where the permanent deformation of a specimen is recorded as a function of the number of load cycles. The loading is for 0.1sec. followed by a 0.9sec. unloading of a specimen. There are three types of phases that occur during a repeated load test: primary, secondary, and tertiary flow. In the primary flow region, there is a decrease in strain rate with time followed by a constant strain rate in the secondary flow region, and finally an increase in strain rate in the tertiary flow region. Tertiary flow signifies that a specimen is beginning to deform significantly and individual aggregates that make up the matrix start to "flow". The flow number is based upon the onset of tertiary flow (or the minimum strain rate recorded during the course of the test). The following description is shown graphically in Figure 2.2.

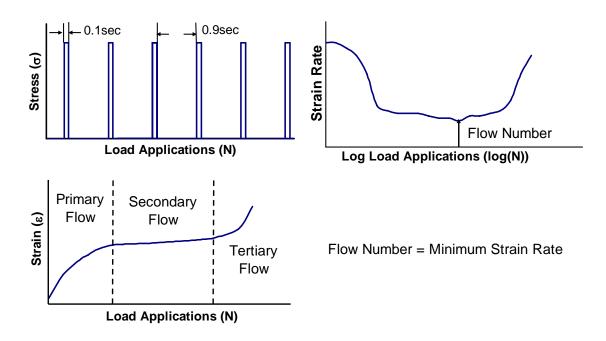


Figure 2.2 Flow Number Loading (Robinette 2005)

Flow number testing is similar to pavement loading because pavement loading is not continuous; there is a dwell period between loadings. This allows a pavement a certain amount of time to recover some strain induced by the loading. Additional reports on dynamic modulus and repeated loading can be seen elsewhere (Robinette 2005, NCHRP Report 465, and NCHRP Report 547).

CHAPTER 3 EXPERIMENTAL PLAN

3.1 Experimental Plan

This research has been divided into two phases. Phase I testing was used to determine the number of freeze/thaw cycles that will cause the equivalent damage to AASHTO T283 specimens. Phase II testing of mixes for moisture damage used the results of Phase I for the AASHTO T283 testing on 150mm specimens and the results of Phase I and Phase II for dynamic modulus testing. In the following sections below, the mixture experimental plan and laboratory testing experimental plan is outlined.

3.1.1 Phase I Testing – Sensitivity Study

The experimental plan considers different mix types, aggregate sources, laboratory test systems, and conditioning approaches. The experimental plan includes two integrated plans: one for mixes and one for laboratory tests. A sensitivity study on the effects of specimen size and compaction method was conducted on a limited number of mixes to determine the amount of conditioning that should occur for larger Superpave compacted specimens. Table 3.1 below outlines the sensitivity study experimental plan.

Table 3.1 Sensitivity Study Experimental Plan for Mix and Aggregate Types

PHASE 1 MOISTURE				
NMAS (mm)	Traffic Level (ESAL)			
INMAS (IIIII)	≤ 3,000,000	>3,000,000		
25.0 or 19.0	Limestone - M50 Dundee	Limestone - M59 Brighton		
23.0 01 19.0	Gravel - M21 St. Johns			
12.5 or 9.5	Limestone - BL96 Howell	Limestone - I-196 Grand Rapids		
12.3 01 9.3	Gravel - M21 Owosso	Slag/Gabbro - I-75 Clarkston		

Table 3.2 outlines the laboratory test plan for the sensitivity study. As previously mentioned, this plan partially duplicates the work conducted and reported in NCHRP Report 444. Twenty specimens per project per compaction method/diameter size were procured. This resulted in a

total of 420 specimens tested for the sensitivity study. Superpave designed mixes were used in the study, but the method of compaction (Marshall or Superpave) to achieve 7.0% air voids will vary. It was also be necessary to determine the conditioning time necessary to produce the same tensile strength ratios in larger specimens undergoing Superpave compaction compared with 100mm Marshall compacted specimens. The standard conditioning of specimens was the same as outlined by AASHTO T283 for 150mm specimens. The 150mm specimens for Phase I testing will be used for the results for the AASHTO T283 testing for Phase II.

Table 3.2 Sensitivity Study Experimental Plan for Effect of Compaction Method and Conditioning Period on Performance

Conditioning		Unconditioned		Conditioned		
Period	100mm Marshall	100mm Superpave	150mm Superpave	100mm Marshall	100mm Superpave	150mm Superpave
AASHTO T283, Standard Conditioning Time	XXXXX ¹	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
AASHTO T283, 2 Times Standard Conditioning Time	N/A ²	N/A	N/A	XXXXX	XXXXX	XXXXX
AASHTO T283, 3 Times Standard Conditioning Time	N/A	N/A	N/A	XXXXX	XXXXX	XXXXX

¹One X represents a specimen tested per job.

3.1.2 Phase I – Preliminary Binder Study

Two experimental plans for asphalt binder and mastic were executed. The first set of experiments determined which testing conditions should be employed in the final testing procedure. Verification of the hypothesis that an "aggregate type" material would yield significantly different results than a steel interface occurred during the initial test set.

Two binders were selected with known characteristics, AAA-1 and AAM-1. These binders were selected because one is moisture prone and the other is not. Two types of discs were employed to determine if the hypothesis of the material interface would yield a significant difference. The control disc was stainless steel. The selection of the aggregate-type of material

²Not applicable.

was a bit more complex than the selection for a control disc. The material desired was an aggregate-type, but a neutral material to reduce inconsistencies from source was coveted. Manufactured ceramic discs were selected as a neutral aggregate-type disc for the testing. The properties of the ceramic material, Cordierite, are detailed in Table 3.3. The chemical composition of Cordierite is $Mg_2Al_4Si_5O_{18}$, and it is referred to as Magnesium Aluminum Silicate.

Table 3.3 Properties of Ceramic Discs (Rottermond, 2004)

Property		Units
Name	Cordierite	
Color	Tan	
Hardness	6	Mohs
Water Absorption	10	%
Specific Gravity	2.0	
Tensile Strength	3,700	PSI
Compressive Strength	40,000	PSI
Flexural Strength	9,500	PSI
Max. Operating Temp. Non-Loading Conditions	1,300	Celsius

3.1.2.1 Gap Size and Interface Selection

Since it was hypothesized that ceramic discs would be a better interface for moisture susceptibility testing of asphalt binders, the hypothesis needed to be tested. Both ceramic and stainless steel interfaces were tested using the AAA-1 and AAM-1 asphalt binders at different gap sizes. The gap sizes evaluated were 200µm, 300µm, 500µm, and 1000µm for both binders and interface types. Table 3.4 displays the experimental plan followed for determining the appropriate gap size and interface material. Each replication of original binder tested is represented by an "X".

Table 3.4 Gap Size and Interface Selection Experimental Plan

Binder	Condition	Testing	Gap Size	Stainless	Ceramic
Dillaci	Condition	Environment	(µm)	Steel	Ceranne
	Unaged Unconditioned		200	XXX	XXX
	Aged Unconditioned		200	XXX	XXX
	Unaged Unconditioned		300	XXX	XXX
	Aged Unconditioned Unaged Unconditioned Aged Unconditioned Unaged Unconditioned Aged Unconditioned Unaged Unconditioned	Water Bath	300	XXX	XXX
	Unaged Unconditioned	VValer Dalir	500	XXX	XXX
	Aged Unconditioned		300	XXX	XXX
	Unaged Unconditioned	ned 10 ned 2 ned 3 ned 4 Air Chamber	1000	XXX	XXX
AAA-1	Aged Unconditioned		7000	XXX	XXX
AAA-1	Unaged Unconditioned		200	XXX	XXX
	Aged Unconditioned		200	XXX	XXX
	Unaged Unconditioned Aged Unconditioned Unaged Unconditioned Aged Unconditioned Unaged Unconditioned Aged Unconditioned		300	XXX	XXX
		Air Chambar	300	XXX	XXX
		All Chamber	500	XXX	XXX
			300	XXX	XXX
			1000	XXX	XXX
		700	7000	XXX	XXX
	Unaged Unconditioned		200	XXX	XXX
	Aged Unconditioned		200	XXX	XXX
	Unaged Unconditioned		300	XXX	XXX
	Aged Unconditioned	Water Bath	300	XXX	XXX
	Unaged Unconditioned	vvaler balli	500	XXX	XXX
	Aged Unconditioned]	500	XXX	XXX
	Unaged Unconditioned]	1000	XXX	XXX
AAM-1	Aged Unconditioned]	1000	XXX	XXX
AAIVI-I	Unaged Unconditioned		200	XXX	XXX
	Aged Unconditioned		200	XXX	XXX
	Unaged Unconditioned		300	XXX	XXX
	Aged Unconditioned	Air Chamber	300	XXX	XXX
_	Unaged Unconditioned	Air Chamber	500	XXX	XXX
	Aged Unconditioned]	500	XXX	XXX
	Unaged Unconditioned		1000	XXX	XXX
	Aged Unconditioned		1000	XXX	XXX

It was anticipated that the new test procedure would be used for both unmodified and modified binders. To ensure that the selected gap size for the new test procedure was adequate for modified binders, fillers were added to AAA-1 and AAM-1. Only two gap sizes were used to test the filler modified binders since the other two gap sizes had been eliminated. Further discussion of gap size selection is in Chapter 7. Table 3.5 displays the experimental plan conducted for the 500μm and 1000μm. This second experimental plan not only evaluated gap size, interface material, but also different levels of conditioning. Three conditioning types were

considered, unconditioned (control), moisture saturated, and moisture saturated with one freeze/thaw cycle.

Table 3.5 Experimental Plan for AAA-1 and AAM-1 Asphalt Binders

		Test	Condition				
Environment	Disk	Saturation	Freeze/Thaw	Mastic	Percent	AAA-1	AAM-1
					5	XXX	XXX
				No Silica 5 Hydrated Lime 10 20 Silica 10 20 None 0 Hydrated Lime 10 20 No 5 Hydrated Lime 10 20 None 0 Silica 10 20 None 0 Hydrated Lime 10 20 Yes 5	XXX	XXX	
					20	XXX	XXX
		Unconditioned	No		5	XXX	XXX
				Silica	10	XXX	XXX
					20	XXX	XXX
				None	0	XXX	XXX
					5	XXX	XXX
Ceramic			Hydrated Lime	10	XXX	XXX	
				20	XXX	XXX	
	Ceramic		No	Silica	5	XXX	XXX
					10	XXX	XXX
					20	XXX	XXX
Water	Water Con	Conditioned		None		XXX	XXX
vvator		Conditioned		Hydrated Lime		XXX	XXX
					10	XXX	XXX
					20	XXX	XXX
			Yes		5	XXX	XXX
				Silica	10	XXX	XXX
					20	XXX	XXX
				None	0	XXX	XXX
					5	XXX	XXX
				Hydrated Lime	10	XXX	XXX
					20	XXX	XXX
	Steel	Unconditioned	No		5	XXX	XXX
				Silica	10	XXX	XXX
					20	XXX	XXX
				None	0	XXX	XXX

3.1.3 Phase II Testing

Phase II testing was focused on evaluating the adequacy of various test procedures for evaluating the moisture susceptibility of HMA materials. The test temperature and moisture conditioning of specimens was determined in the sensitivity studies for mix and binders for the Phase II experimental plan. Table 3.6 summarizes the overall experimental plan for Phase II.

Table 3.6 Laboratory Experimental Plan for Phase II

		Unconditioned	Conditioned
	AASHTO T283	XXXXX	XXXXX
System	Dynamic Complex Modulus	XXX	XXX
Test	Asphalt Pavement Analyzer	XXX	XXX

Dynamic Shear Rheometer – Asphalt Binder	XXX	XXX
Dynamic Shear Rheometer – Mastic	XXX	XXX

3.2 Sampled Projects

The majority of projects were sampled during the 2004 construction season. Two projects were used from the 2000 construction season sampling and three projects were sampled in the 2005 construction season. The 2000 construction projects that were sampled were stored in a heated, metal building where the material was protected from rain, heat, and snow. By sampling materials from across the state, a better cross section of materials will be represented by the different contractors and available materials that are in the state. The majority of high volume mixes were found around the Detroit metro area whereas lower volume mixes were found around the state. Figure 3.1 illustrates the locations of the mixes sampled for this research project, a dot represents the approximate project location, whereas Appendix A: Project JMFs contains all the material properties related to each project.

Figure 3.1 Project Locations

3.3 Sampling

For this research project all HMA was sampled from mini-stockpiles. The locations for sampling were selected from the base to the top of a pile and around its perimeter, while keeping in mind the different strata of the stockpile, in that, the bottom of the piles comprises the greatest percentage of the material and hence the greatest percentage of the material was sampled from

this location. Figure 3.2 illustrates the composition of a cone stockpile in terms of its percentages with height. The type of sampling used for this project was mini-stock pile sampling due to the amount of material being sampled. Sampling from the mini-stock pile was done in accordance with ASTM D140. Typically, sampling occurs behind the paver or out of the truck but because one to two tons of material was sampled, the mini-stock pile was the easiest and simplest way to sample. In addition to the material being sampled, the job mix formula (JMF) was collected in order to verify the HMA volumetrics.

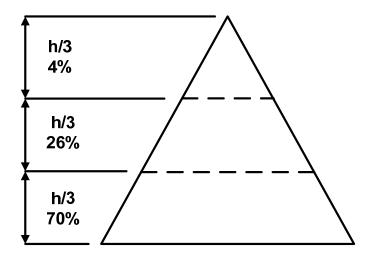


Figure 3.2 Stockpile Cone Proportions (Robinette 2005)

The sampled materials were brought back from the various plant sites and stored either in the Water Resources Building or in the basement of Dillman Hall at Michigan Technological University prior to sample preparation.

CHAPTER 4 PROCEDURES AND SAMPLE PREPARATION

4.1 Materials Collection

According to AASHTO T283 and NCHRP 465, three replicate specimens are required for testing the moisture sensitivity of HMA mixtures; three for the control group and three for the moisture conditioned group. Testing three specimens reduces the amount of testing variability inherent in each test procedure versus testing one or two specimens. For Phase I testing, twenty specimens per project (seven total projects) are required for AASHTO T283 testing. For Phase II testing, ten specimens per project (twenty-one total projects) are required. Therefore, thirty-four five gallon buckets of loose mix and two five gallon buckets of asphalt binder were sampled for Phase I projects and twenty five gallon buckets of loose mix and two five gallon buckets of asphalt binder were sampled for Phase II projects. Any additional material may then be used for supplemental testing. Specimen Preparation and Testing

Specimen preparation used to procure Superpave gyratory and Marshall specimens are outlined below. This also includes splitting samples, maximum theoretical specific gravity, specimen compaction, bulk specific gravity, and specimen cutting and coring.

4.1.1 Splitting

The loose mix that was sampled from the twenty-one jobs was heated up to 145 to 160°C for approximately two hours depending on the asphalt binder that was used. Each five gallon bucket of HMA contained roughly 30 to 40kg of mix. Splitting was conducted in accordance with ASTM C702. Sample sizes included two 2,000g samples for maximum theoretical specific gravity tests. For Phase I testing, 20 samples per project were batched for 100mm Superpave specimens, 20 samples per project were batched for 150mm Superpave specimens, and 20 samples per project were batched for 100mm Marshall specimens. Phase II testing required 10

specimens per project for AASHTO T283 testing, dynamic complex modulus, and APA testing each, for a total of 30 specimens for Phase II mix testing.

4.1.2 Maximum Theoretical Specific Gravity (G_{mm})

Maximum theoretical specific gravity testing (G_{mm}) was conducted in accordance with ASTM 2041 for two 2,000g samples. The G_{mm} was used to determine the volumetric properties of gyratory specimens and Marshall specimens, as well as the sawed and cored specimens. In addition, the G_{mm} was used to verify the G_{mm} on the JMF.

The maximum theoretical specific gravity (G_{mm}), also known as the Rice specific gravity, was measured according to AASHTO T209. The precision outlined in the specification states that the acceptable range of two test results for a single operator is ± 0.011 standard deviations from the mean which is the difference of two properly conducted tests. For this research project field mix was used in which there is not as much control as with laboratory mixtures. In order to achieve a representative sample, quartering of the mixture occurred to mitigate differences between samples. In reviewing the standard deviations of the two G_{mm} samples for each project, it was found that all of the sampled mixtures fell within the single operator precision. Table 4.1shows the mean and standard deviations for each of the mixes. Of the twenty-one mixes presented in Table 4.1, six of the HMA mixtures do not contain recycled asphalt pavement (RAP). RAP is a variable aggregate product since one stockpile can constitute several sources of RAP and each source has a unique gradation, binder content, age, and depth of milling. The addition of RAP to a mix can contribute to the variability in the characteristics of field samples.

Table 4.1 G_{mm} Mean and Standard Deviation for Each Project

Project	Mix Type/Traffic	Mean ISU G _{mm}	Std. Dev.	Contractor JMF G _{mm}	RAP (%)
M-50 Dundee	3E1	2.519	0.0011	2.511	10.0
M-36 Pinckney	3E3	2.511	0.0028	2.488	15.0
M-45 Grand Rapids	3E3	2.513	0.0000	2.509	-
M-84 Saginaw	3E3	2.543	0.0151	2.550	20.0
M-21 St. Johns	3E3	2.489	0.0003	2.488	13.0
BL I-96 Howell	4E3	2.501	0.0089	2.480	15.0
M-21 Owosso	5E3	2.470	0.0031	2.470	10.0
M-66 Battle Creek	4E3	2.470	0.0043	2.480	15.0
M-50 Dundee	4E3	2.538	0.0025	2.520	-
US-12 MIS	4E3	2.491	0.0054	2.490	17.0
M-59 Brighton	3E10	2.502	0.0034	2.485	15.0
Michigan Ave. Dearborn	3E10	2.493	0.0025	2.496	15.0
VanDyke, Detroit	3E30	2.604	0.0103	2.577	-
US-23 Hartland	3E30	2.492	0.0019	2.494	15.0
I-75 Levering Road	3E10	2.443	0.0042	2.430	18.0
I-196 Grand Rapids	5E10	2.499	0.0018	2.499	-
I-75 Clarkston	4E30	2.487	0.0007	2.467	12.0
M-53 Detroit	4E10	2.563	0.0023	2.553	8.0
Michigan Ave. Dearborn	4E10	2.485	0.0012	2.464	10.0
I-75 Toledo	5E30	2.507	0.0074	2.510	-
I-94 Ann Arbor	4E30	2.515	0.0000	2.514	-

A comparison was made between ISU's and the contractor's G_{mm} supplied in the JMF. Figure 4.1 illustrates the comparison of laboratory G_{mm} and contractor G_{mm} . Some differences do exist between the ISU and contractor JMF G_{mm} as shown in Figures 4.1 and 4.2. As the asphalt content increases, the G_{mm} decreases due to the fact that asphalt cement has a lower specific gravity (approximately 1.020 to 1.030) than the aggregate. The increase of asphalt binder to a mixture results in a decrease in aggregate weight of a mix on a unit volume basis. Some of the mixtures do not fall within the multilaboratory precision of 0.019. There are several explanations for this in addition to the RAP component. One reason for the difference is that these samples are from the field and there are numerous sources where variability and segregation can occur. Every attempt was made to obtain representative field samples by sampling from mini stock piles, but prior construction processes could be not be controlled. A second possible reason for the difference is that the changes could have been made to a mix

design in production that deviates from the JMF. A third reason is that the binder content in a JMF could be higher or lower than what was stated. This will be commented on in the next section.

A two-way analysis of variance (ANOVA) with no interaction was used to compare the two methods of obtaining a G_{mm} (JMF versus laboratory obtained) by project. Table 4.2 shows that there is statistical difference between the contractor JMF and the laboratory obtained G_{mm} value. This could be due to changes in aggregate percentages, gradation, binder content, sampling, and RAP.

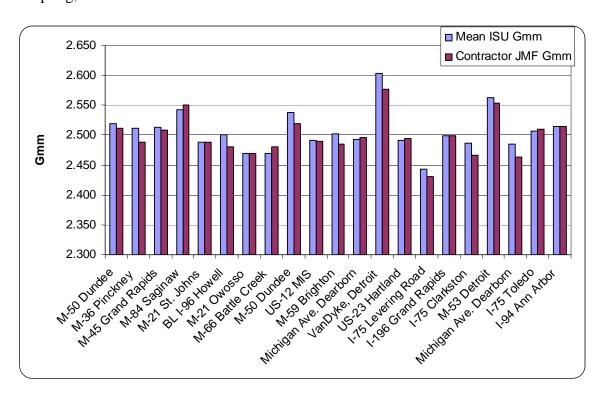


Figure 4.1 ISU and Contractor JMF G_{mm}

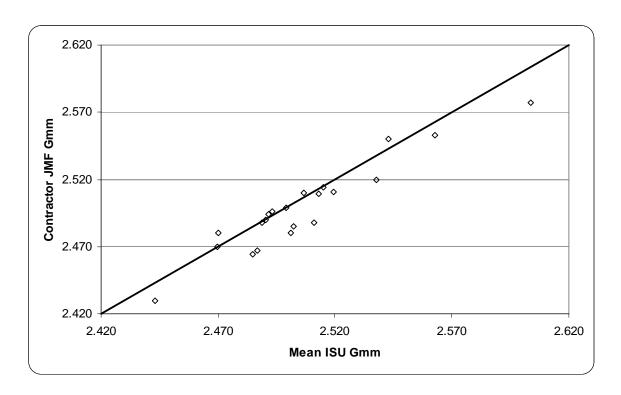


Figure 4.2 ISU and Contractor JMF G_{mm}

Table 4.2 2-Way ANOVA Comparing Laboratory G_{mm} to Contractor JMF

Source of Variation	SS	df	MS	F	P-value	F crit
Project	0.0444	20	0.00222	35.8551	1.6E-11	2.12416
Gmm Method	0.0006	1	0.0006	9.63832	0.00559	4.35124
Error	0.0012	20	6.2E-05			
Total	0.0462	41				

Asphalt binder constitutes the most expensive part of the HMA mixture. The differences in G_{mm} values between the contractor and ISU may be a result of differences in binder contents. Most contractors want to decrease the amount of asphalt in the mix to make the mix more economical in a low bid situation. In the state of Michigan, the production and placement of HMA is a single bid item and not separated between asphalt binder and aggregates nor their placement. Thus, a decrease in the binder content, yet still within specification tolerance could save a contractor a substantial amount of money on a paving project.

4.2 Extraction Test

An important property of an HMA mixture is asphalt content. Satisfactory performance of an HMA mixture is a function of asphalt content since mixtures with low asphalt contents are not durable while one with a high asphalt content is not stable. The asphalt content directly affects the volumetric properties such as air voids, voids in the mineral aggregate (VMA), voids filled with asphalt (VFA), and film thickness. Asphalt content can also have an effect on HMA performance in terms of $|E^*|$, flow number, and rutting.

The asphalt content of mixtures were measured by an extraction test using the Abson method (ASTM D2172). The extraction test uses solvents to dissolve asphalt cement in a mix. The recovered asphalt cement and solvent are passed through filter report not allowing the aggregate to pass through it. The advantage of this test is that it allows for the determination of the aggregate gradation and comparison then to the JMF.

Table 4.3 gives the results of running extractions on each HMA mixture and comparing them to the JMF binder content. This table shows that fourteen of the twenty-one projects have lower binder contents than what the JMFs report. Another benefit of running an extraction is that a sieve analysis can be conducted on the extracted aggregate and compared with a JMF. The JMF and the resulting extracted gradation can be seen in Appendix A. Figure 4.3 and Figure 4.4 show graphically the extracted binder content versus the JMF binder content. The figures clearly illustrate that the asphalt binder for a majority of the projects is less than the reported value on the JMF. This can result in G_{mm} values lower than what is reported in a JMF.

Table 4.3 Extracted Binder Content versus JMF Binder Content

Project	Mix Type/Traffic Extracted Binder Content (%)		JMF Binder Content (%)	
M-50 Dundee	3E1	5.0	5.4	
M-36 Pinckney	3E3	5.2	5.8	
M-45 Grand Rapids	3E3	4.9	5.1	
M-84 Saginaw	3E3	4.7	4.6	
M-21 St. Johns	3E3	4.5	5.4	
BL I-96 Howell	4E3	5.0	5.5	
M-21 Owosso	5E3	5.7	5.9	
M-66 Battle Creek	4E3	5.4	5.5	
M-50 Dundee	4E3	5.6	5.6	
US-12 MIS	4E3	5.9	5.8	
M-59 Brighton	3E10	5.2	5.7	
Michigan Ave. Dearborn	3E10	5.9	5.6	
VanDyke, Detroit	3E30	4.7	5.2	
US-23 Hartland	3E30	5.7	5.5	
I-75 Levering Road	3E10	4.7	5.5	
I-196 Grand Rapids	5E10	5.7	5.6	
I-75 Clarkston	4E30	5.3	5.8	
M-53 Detroit	4E10	5.2	5.6	
Michigan Ave. Dearborn	4E10	5.6	5.8	
I-75 Toledo	5E30	5.4	5.4	
I-94 Ann Arbor	4E30	6.0	6.6	

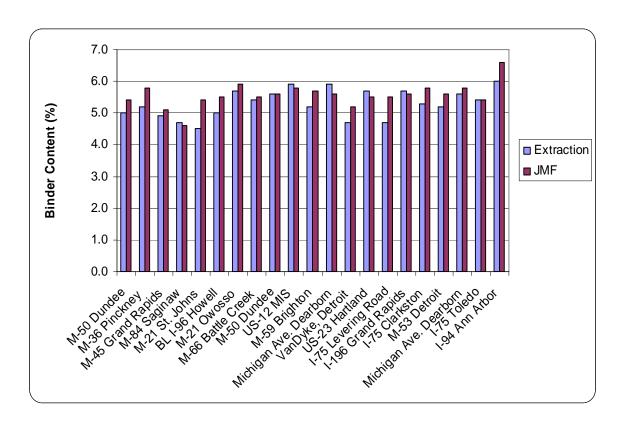
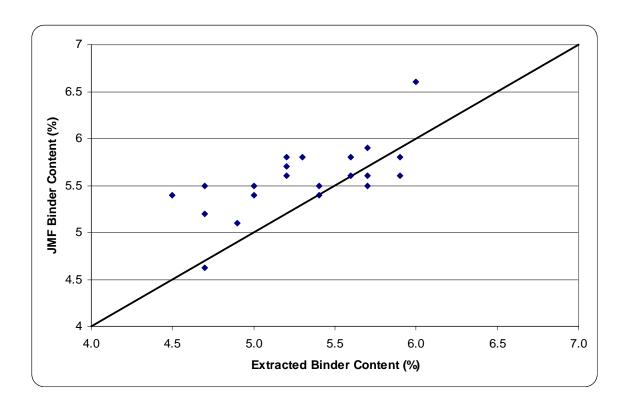



Figure 4.3 ISU and Contractor Binder Contents

Figure 4.4 ISU versus Contractor Binder Contents

A two-way ANOVA with no interaction was the statistical tool used to analyze the binder contents obtained from the laboratory and the JMF. Table 4.4 shows that there is a statistical difference between the contractor JMF and the laboratory obtained binder content. This can be due to changes in gradation, RAP content, or a decrease in the binder content at the plant.

Table 4.4 2-Way ANOVA Comparing Laboratory Extracted Binder Content to Contractor JMF

Source of Variation	SS	df	MS	F	P-value	F crit		
Project	5.61219	20	0.28061	4.93948	0.00038	2.12416		
Method	0.75201	1	0.75201	13.2374	0.00164	4.35124		
Error	1.13619	20	0.05681					
Total	7.50039	41						

After solvents are used to dissolve the asphalt cement off of the aggregate, then the asphalt cement and solvent are passed through filter report not allowing the aggregate to pass through. The advantage of this test is that it allows for the determination of the aggregate gradation and comparison then to the JMF. Two-way ANOVAs with no interaction were used at each sieve size to determine if the percentage of the aggregate weight has changed on the sieves. Table 4.5 shows that the gradation at each sieve size is statistically the same except at the #200 sieve where statistical differences result. For the most part the contractor's JMF compares well with the gradation from the extraction procedure. Figure 4.5 shows a comparison of the sieve analysis results from the #200 sieve. The figure shows that there is a difference in #200 material between the contractor JMF and the results from the extraction and sieve analysis.

Table 4.5 2-Way ANOVA Comparing Laboratory Extracted Gradation to JMF Gradation

Sieve Size (mm)	2-Way ANOVA Results JMF vs. Extraction
1 (25)	Statistically the Same
3/4 (19)	Statistically the Same
1/2 (12.5)	Statistically the Same
3/8 (9.5)	Statistically the Same
#4 (4.75)	Statistically the Same
#8 (2.36)	Statistically the Same
#16 (1.18)	Statistically the Same
#30 (0.60)	Statistically the Same
#50 (0.30)	Statistically the Same
#100 (0.15)	Statistically the Same
#200 (0.075)	Statistically Different

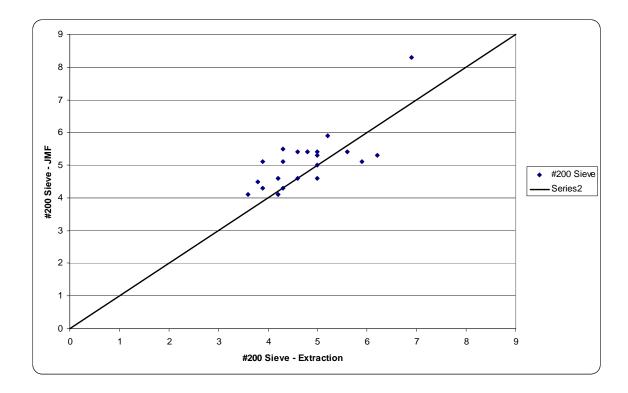


Figure 4.5 Comparison of #200 Sieve

4.2.1 Superpave Gyratory Compaction

Superpave gyratory specimens were compacted with a Pine AFGC125X SGC. The 100mm diameter specimens were compacted to approximately 63.5mm in height and the 150mm diameter specimens were compacted to approximately 95mm in height for Phase I. For Phase II,

150mm diameter specimens were compacted to 95mm in height for AASHTO T283 testing and APA testing. Dynamic complex modulus specimens were compacted to 170mm in height. All specimens were compacted to 7±1% air voids. An assumed appropriate correction factor was used based on gradation and NMAS. A new correction factor was calculated if the air voids were out of range and additional specimens were procured.

4.2.2 Marshall Compaction

The Marshall compaction method was only used for Phase I of this research project. A double-sided, automated Marshall hammer was used to compact specimens that were 100mm by 63.5mm in height. A double-sided mechanical compactor was selected instead of using the hand compactor for three reasons; first, the variability of the compaction procedure would be minimized, secondly, if this study was extended further, the compaction procedure would be uniform, and thirdly, 140 specimens had to be procured so this method was better suited for mass production of the samples. Before performance specimens could be procured, the determination of the number of blows to achieve 7±1% air voids was needed for each mix. Four specimens per job were compacted to 10, 25, 75 and 125 blows per side. A graph of air voids versus number of blows per side was used to determine the number of blows required to achieve 7±1% air voids.

4.3 Compaction of Gyratory and Marshall Specimens

In Michigan, mix designs are based on compacting specimens to N_{des} , which allows for the air voids of the specimen to be measured according to AASHTO T166. In order to compact gyratory specimens, a correction factor is needed to compact the specimens to height. The ratio of the estimated G_{mb} via volumetric measurements of weight, height, and diameter to that of the measured G_{mb} via saturated surface dried constitutes the correction factor. Typically, HMA mixtures have a correction factor of 1.0 to 1.03. For Phase I and Phase II Superpave gyratory

specimens, a correction factor of 1.02 was used for fine mixes and a correction factor of 1.04 was used for coarse mixtures. The correction factor was refined when the measured air voids were not between 7±1% and additional specimens were procured with a new correction factor and the air voids measured again. For the Marshall specimens, the sample mass was kept constant and graphs of air voids versus number of blows were constructed for each project. The number of blows to achieve 7% air voids was estimated from the graphical relationship for each mix. The air voids were measured for the specimens and if they were not within 7±1% then additional specimens were made by adjusting the number of blows.

All Superpave gyratory specimens for Phase I and Phase II were compacted with a Pine Superpave Gyratory (SGC) model AFGC125X. This machine was selected because of its familiarity and higher production capability. The SGC was fully calibrated to ensure that the specimens were compacted to the correct height at an angle of 1.25° with a pressure of 600kPa in accordance with Superpave compaction criterion.

Samples were split according to the weights required to achieve 63.5, 95, and 170mm for the SGC specimens. The Marshall specimens used a batch weight of 1200g and then compacted to the required number of blows per side to achieve $7\pm1\%$ since the Marshall specimen height is to be about 63.5mm in height. These SGC specimen weights were determined using the G_{mm} test results and the guidance outlined in SP-2 (1996).

Specimens were left to cool until room temperature was achieved. At that time they were labeled and prepared for bulk specific gravity testing (G_{mb}). A total of 420 samples were compacted for Phase I and 420 samples were compacted for Phase II.

4.3.1 Bulk Specific Gravity (G_{mb})

The bulk specific gravity was determined for all laboratory compacted specimens and those specimens that were cut and cored. The testing was conducted in accordance with ASTM D2726. During the sawing and coring procedure, the specimens were exposed to water due to the fact that the saw blades and core barrel are water cooled. The dry weight of the specimen after cutting and coring is needed in order to determine the bulk specific gravity. According to ASTM D2726, the bulk specific gravity of a wet specimen must undergo a test temperature of 52°C for 24 hours in order to ensure a dry weight. Unfortunately, at this temperature, the HMA specimen could undergo creep, thus changing the dimensions and volumetrics of the sample. Robinette (2005) found that specimens after two days of drying on a wire rack in front of fan was adequate since the rate of weight change became asymptotical towards its true dry weight. This can be seen in Figure 4.6. Therefore, the submerged and saturated surface dry weight were taken immediately after sawing and coring, and the dry weight was taken two or more days after the submerged and saturated surface dry weight.

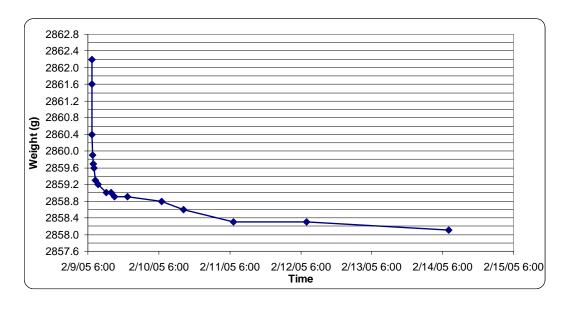


Figure 4.6 Changes in Weight of Specimen After G_{mb} Determination (Robinette 2005)

4.4 Bulk Specific Gravity of Gyratory and Marshall Specimens

The bulk specific gravity (G_{mb}) was measured on all the specimens using AASHTO T166. There was noticeable variability in the measured G_{mb} and air voids for specimens from the same job. This variability is likely due to HMA mixing at the plant, sampling of the mixture, or splitting processes. In according with AASHTO T283, all specimens (Superpave and Marshall) must have measured air voids of $7\pm1\%$. The air voids were measured using AASHTO T269. For those specimens that are cut and cored it was anticipated that the air voids would not change significantly, hence the $7\pm1\%$ air void specification applies to gyratory compacted specimens. All volumetric data for the specimens of this project can be found in Appendix B.

4.4.1 Specimen Cutting and Coring

Specimen cutting and coring was only used for Phase II specimen preparation for subsequent dynamic complex modulus testing of the samples. The draft test protocol from NCHRP 9-19 calls for 100mm by 150mm specimens after coring. A sawing and coring device was developed by Shedworks, Inc. that does the sawing and coring in one piece of equipment. First, the diametrical ends of the specimen are sawed off with a water cooled, double-bladed, diamond tip saw in order to give the specimens a height of 150mm and to ensure parallelism between the top and bottom of a specimen. A coring machine was used to obtain the 100mm diameter specimen from the 150mm gyratory specimen.

Specimens created in a Superpave gyratory compactor were wet sawed to 75mm in height for APA testing. After sawing, the specimens were dried and volumetric measurements recalculated.

4.5 Specimen Measurement

The AASHTO T283 and APA samples were measured in accordance with AASHTO T283. Two diameter and four height measurements were recorded with a digital caliper and averaged. The dynamic complex modulus required a total of six diameter measurements (top, middle, and bottom of specimen) and four height measurements at 0°, 90°, 180°, and 270° and averaged. According to NCHRP 9-29 Interim Report, the diameter standard deviation was required to be less than 2.5mm, otherwise the specimen should be discarded. The only requirement on specimen height was that it should be within the range of 148 and 152mm.

4.6 Volumetrics of Sawed/Cored Test Specimens

The volumetrics of the sawed/cored specimens was measured on all the specimens using AASHTO T269. The volumetric properties of the sawed/cored specimens can be seen in Appendix B. It was noticed that on average, the air voids of sawed/cored specimens were lower than that of the gyratory specimens, this relationship can be seen in Figure 4.7. This relationship makes sense because high air voids exist around the perimeter and at the ends of gyratory compacted specimens. When the ends of the specimens are removed and the sample cored from the center of the Superpave gyratory compacted sample, some of the air voids are removed. The change in air voids ranged from -2.1 to +1.1%.

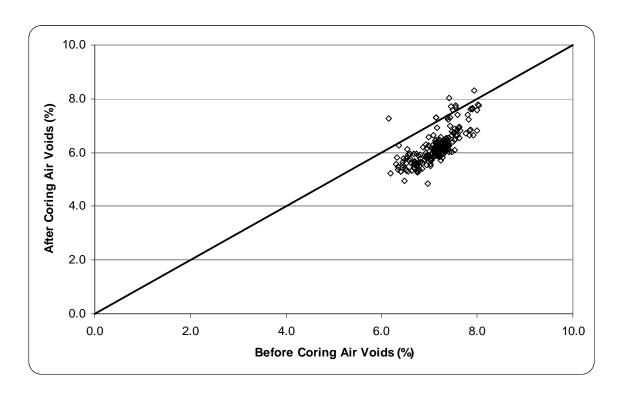


Figure 4.7 Air Voids Before and After Sawing/Coring

4.7 Testing and Calculations

Outlined below are the testing procedures and calculations associated with this research project. The types of tests are indirect tensile strength, dynamic complex modulus, and APA tests.

4.7.1 Indirect Tensile Strength Testing

The testing procedure described herein is derived from the AASHTO T283 Resistance of Compacted Bituminous Mixture to Moisture Induced Damage. Specimens were compacted according to section 4.2.3 and divided into two subsets so that each subset had the same average air voids. The dry subset (control group) were wrapped with plastic or placed in a heavy-duty, leak-proof plastic bag and stored in a water bath at 25±0.5°C for 2 hours ± 10 minutes prior to testing. The conditioned subset specimens were placed in a pycnometer with a spacer.

Approximately 25mm of water was placed above the specimen. The specimen was vacuum

saturated for 5 to 10 minutes at 13-67 kPa. The specimen is left submerged in water bath for 5 to 10 minutes after vacuum saturating. The mass of the saturated, surface dry specimen was determined after partial vacuum saturation. Next, the volume of absorbed water was calculated. Finally, the degree of saturation was calculated. If the degree of saturation was between 70% and 80% testing proceeded. If the degree of saturation was less than 70%, the vacuum saturation procedure was repeated. If saturation was greater than 80%, the specimen was considered damaged and discarded. Each vacuum saturated specimen is tightly covered with plastic wrap and placed in a plastic bag with approximately 10±0.5 ml of water, and sealed. The plastic bags are placed in a freezer at -18±3°C for a minimum of 16 hours. The specimens are removed from the freezer and placed in a water bath at 60±1°C for 24±1 hour with 25mm of water above the specimens. Repeat the above steps for conducting multiple freeze thaw cycles. After 24 hours in the $60\pm1^{\circ}$ C water bath, remove specimens and place in a water bath at $25\pm0.5^{\circ}$ C for 2 hours \pm 10 minutes. Approximately 25mm of water should be above the specimens. It may be necessary to add ice to the water bath to prevent the temperature from rising above 25±0.5°C. Not more than 15 minutes should be required for the water bath to reach 25±0.5°C. Remove specimens from water bath and test.

The indirect tensile strength of the dry and conditioned specimens can be determined at 25°C. Place the specimen between two bearing plates in the testing machine such that the load is applied along the diameter of the specimen. A Universal Testing Machine (UTM) 100 by Industrial Process Controls Ltd. (IPC) was used to conduct the testing. The load is applied at a constant rate of movement of the testing machine head of 50mm per minute. The maximum load is recorded and placed in the following equation in order to calculate tensile strength.

$$S_t = \frac{2000 \times P}{\pi \times t \times D}$$
 (equation 4.1)

where:

 S_t = tensile strength (kPa),

P = maximum load (N),

t =specimen thickness (mm), and

D = specimen diameter (mm).

A numerical index or resistance of an HMA mixture to the effects of water is the ratio of the original strength that is retained to that of the moisture conditioned strength.

$$TSR = \frac{S_2}{S_1}$$
 (equation 4.2)

where:

TSR = tensile strength ratio,

 S_2 = average tensile strength of conditioned subset, and

 S_1 = average tensile strength of dry subset.

4.7.2 Dynamic Modulus Testing

The testing procedure for dynamic modulus testing was derived from NCHRP 9-29 Simple Performance Tester for Superpave Mix Deign. The conditioning the specimens followed the procedure outline in AASHTO T283.

A 100mm diameter by 150mm high cylindrical specimen was tested under a repeated uniaxial, compressive, haversine unconfined load at the appropriate test temperatures. A Universal Testing Machine (UTM) 100 was used to conduct the testing with a temperature controlled testing chamber. The testing configurations for the dynamic modulus test are shown in Table 4.6.

Table 4.6 Dynamic Modulus Testing Configurations

	Fatigue	Rutting
Temperature	T _{eff fatigue}	T _{eff rutting}
Dynamic Load	Induce 75-150µstrain	Induce 75-150µstrain
Loading Rates	0.02 to 25Hz	0.02 to 25Hz

The effective test temperatures for fatigue and rutting are presented further in this final report.

The dynamic stress was determined based on the 25 Hz conditioning cycle that caused corresponding strain in the HMA specimen that exceeded 75 – 150 microstrain.

There was a total of six test frequencies that were run at each test temperature. These test frequencies along with the number of loading cycles are given in Table 4.7. The testing sequence was conducted from high to low frequencies to mitigate the amount of deformation induced upon the specimens during testing.

Table 4.7 Cycles for Test Sequence

Frequency, Hz	Number of Cycles
25	200
10	100
5	50
1	20
0.1	6
0.02	6

Three axial linear variable differential transducers (LVDTs) were fixed at 120° around the perimeter of the specimen in order to record the strain at the middle of the specimen over the length of the test. Witczak et al. (2002), found that as you increase the number of LVDTs and the number of replicate specimens, the standard error of the mean decreases. Three LVDTs were used as part of this study because of the availability of the device developed by Shedworks, Inc. The LVDTs were adjusted to the end of their linear range so the entire range of the LVDT is available during the course of testing.

Specimens were placed in the testing chamber until the effective test temperature was attained in the test specimen. This was found with the aid of a dummy specimen with a temperature sensor embedded in the center of the specimen placed in the test chamber. There was another temperature probe that was placed in the temperature chamber that measured the air (skin) temperature. After the effective test temperature was reached, the specimen was then centered under the loading platens so as to not place an eccentric load on the specimen, and tested.

There are four main calculations that are performed by the associated software. The first is the loading stress, σ_o , that is applied to the specimen during the test.

$$\sigma_o = \frac{\overline{P}}{A}$$
 (equation 4.3)

where:

 $\sigma_o = \text{stress (kPa)},$

 \overline{P} = average load amplitude (kN), and

A = area of specimen (m²).

The recoverable axial strain from the individual strain gauges, ε_{o} , is determined as follows:

$$\varepsilon_o = \frac{\overline{\Delta}}{GL}$$
 (equation 4.4)

where:

 $\varepsilon_o = \text{strain (mm/mm)},$

 $\overline{\Delta}$ = average deformation amplitude (mm), and

GL = gauge length (mm).

Dynamic modulus, $|E^*|$ for each LVDT:

$$|E^*| = \frac{\sigma_o}{\varepsilon_o}$$
 (equation 4.5)

The final equation is to determine the phase angle, for each LVDT:

$$\phi = \frac{t_i}{t_p} (360)$$
 (equation 4.6)

where:

 ϕ = phase angle,

t_i = average time lag between a cycle of stress and strain (sec), and

 t_p = average time for a stress cycle (sec).

The software that was available for this project performed the above calculations was developed by IPC Global. It reported the |E*| and the phase angle for all three LVDTs as well as the permanent and resilient micro-strain and the applied stress for each load cycle.

4.7.3 Asphalt Pavement Analyzer

APA testing followed the APA's User Manual. HMA was compacted using a Superpave Gyratory Compactor. Once the specimens were made, volumetric testing and properties were obtained. A preliminary study on two mixes was conducted to determine which testing conditions should be employed for all 21 mixes. The selection of the two mixes was based on moisture susceptibility testing which evaluated the tensile strength ratio of several mixes.

Testing conditions evaluated with the two mixes were unconditioned submerged in water, unconditioned in air, one freeze/thaw condition submerged in water, and one freeze/thaw condition in air. Three cylindrical specimens were subjected to APA testing for each condition. The unconditioned specimens were tested in accordance with guidelines established by the APA's User Manual (Pavement Technology, 2002). The freeze/thaw conditioned specimens

were prepped in accordance with the conditioning process outlined in AASHTO T283. HMAs with a high temperature grade of 58 or 64 were tested at their respective high temperature. The polymer modified mixes with a high temperature grade of 70 were also tested at 64, since this was the prescribed field temperature; the higher grade of 70 provides improved rutting resistance. The samples were heated to the high temperature (either 58 or 64°C) since permanent deformation typically occurs during the warmer months when the binder is more fluid or less viscous.

All specimens were cut to the appropriate height (75mm) for circular specimens using a circular saw. New geometries of the specimens were recorded after sawing along with new bulk specific gravity measurements using the saturated surface dry method (ASTM D2726).

Specimens were grouped in sets of three based on bulk specific gravity measurements.

Control specimens were preheated at the high performance grade a minimum time of 6 hours in accordance with the APA testing guidelines. After preheating, a pneumatic tube and steel wheel were lowered over the central axis of each specimen and an APA was set to run 8,000 cycles. As mentioned previously, a cycle is equivalent to a wheel passing one time forward and back to its starting position. Once the inner chamber of the APA reheated to the appropriate testing temperature, a test was initiated. The reheating usually took less than 2 minutes, since the chamber was heated to the appropriate test temperature prior to the placement of specimens. The reheating was necessary since there was some heat loss upon the opening of the APA doors to install the specimens locked inside the molds. After a completion of 8,000 cycles, test data was automatically transferred to an Excel file and saved for future analysis.

Specimens in either the freeze/thaw tested in air condition state or freeze/thaw tested submerged condition state were prepared in the same manner, except these specimens were

moisture saturated and endured one freeze/thaw cycle prior to testing. These specimens were vacuum saturated to a maximum of 80% air voids filled with water. Specimens were wrapped in Glad Press n' Seal® with ends of the wrap taped down with packing tape. Wrapped specimens and 10ml of water were placed inside a plastic freezer bag labeled with mix information, specimen number, and condition state group. Specimens inside the freezer bags were then placed in a freezer (-18 \pm 3°C) for a period of 24 hours. To minimize the amount of heat entering the freezer, all specimens in a particular group were prepared first and then entered into the freezer at the same time instead of individually. After 24 hours, specimens were placed in a 60°C water bath to thaw. Once thawing was complete, specimens were preheated to the appropriate APA testing temperature for the 6 hour minimum conditioning time. Specimens to be tested in air were placed in an air chamber for preheating, while those to be tested in water were placed in a water bath for preheating. After the allotted 6 hours of preheating, specimens were placed in an APA for testing. Specimens tested in air were placed in an APA and a steel wheel lowered on top of a pneumatic tube and the APA chamber was allowed to re-establish the test temperature prior to the initiation of 8,000 cycles. Specimens tested in water were placed in an APA chamber and the doors sealed shut. Once the APA doors were shut, a metal box elevated to surround the APA molds. Once the metal box had reached its highest point, water heated to the appropriate temperature flowed into the chamber to fill the metal box. The heated water at all times kept specimens completely immersed. Once the metal box was filled and the water and test chamber re-established the appropriate test temperature, 8,000 cycles commenced. Data of the specimens freeze/thaw tested in air condition state or freeze/thaw tested submerged condition state were automatically transferred to an Excel file to be saved and analyzed later.

4.7.4 Dynamic Shear Rheometer (DSR)

Asphalt binder testing was conducted using a modified DSR. The initial modifications to a DSR for moisture susceptibility testing were developed by Rottermond (2004). Additional modifications were developed for this study since the initial modifications did not adequately allow for moisture saturation of a specimen during testing.

The new moisture susceptibility testing procedure is similar to the traditional DSR test procedures outlined in AASHTO T315. The main difference between AASHTO T315 and the new test procedure is in regards to modifications to a base plate and spindle. Instead of asphalt interacting with a stainless steel interface, a new base plate and spindle were devised that allowed for a ceramic interface with the asphalt binder. The stainless steel interface was deemed an unrealistic material for simulating in-situ conditions. Previous studies also identified the disadvantage of using stainless steel (Rottermond 2004, Scholz and Brown 1996). The ceramic material used was the same utilized by Youtcheff in developing a moisture sensitivity test of asphalt binder via a pneumatic pull-off test (Youtcheff and Aurilio 1997). A modification was deemed necessary to simulate moisture accessibility to asphalt binder. The stainless steel interface not only was an unrealistic representation of field conditions, but also did not allow for water to interact as the top and bottom of a specimen. Figure 4.8 through Figure 4.10 depict the alterations to the DSR parts incorporated into the new test procedure for determining moisture susceptibility. The modification to the DSR allows for any material to be used as an interface with asphalt as long as it meets the geometric dimensions of the space allowed for the disc. A manufactured ceramic disc was selected as the interface to reduce the variability contributed by an aggregate with possible material variations. An additional modification was incorporated into the spindle to allow for moisture to penetrate the asphalt via the ceramic disc. Three holes 120° apart were created in the spindle head.

Figure 4.8 Modified DSR Base plate

Figure 4.9 Modified DSR Spindle

Figure 4.10 Modified DSR Spindle with Three Holes

The final modification allowed for a disc of any material type to be place within the base plate and spindle. Set screws are used to hold the disc in place for both the base plate and the spindle. The set screws are at 120° intervals as are the holes through the top of the spindle. Figure 4.10 illustrates the placement of the holes that allow for water flow from the top down. Figure 4.11 through Figure 4.15 illustrate the dimensions and modifications of the modified spindle.

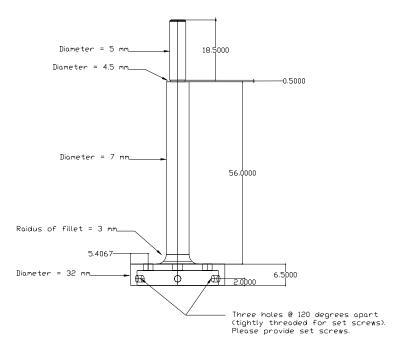


Figure 4.11 Dimensions Of Modified Spindle (Bausano, 2005)

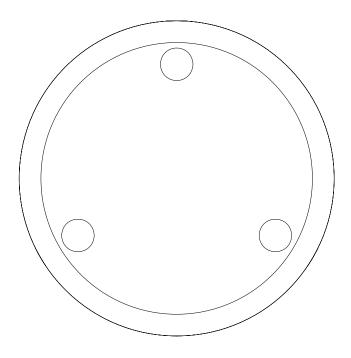


Figure 4.12 View of Spindle Through The Base (Bausano 2005)

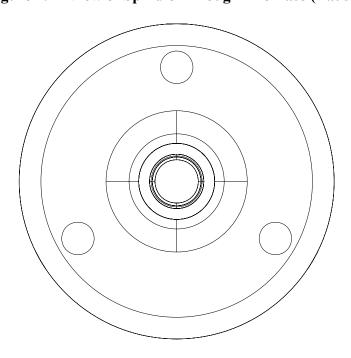


Figure 4.13 View of Modified Spindle From Top Down (Bausano 2005)

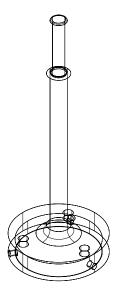


Figure 4.14 Side View of Modified Spindle (Bausano 2005)

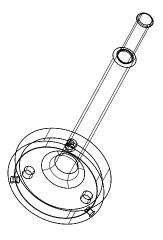


Figure 4.15 Angled View of Modified Spindle (Bausano 2005)

Hydrated lime and silica were used as the mastic material added to the asphalt binders to examine the binder interaction with aggregates. Both the hydrated lime and silica fillers passed the #200 sieve. Prior to mixing the filler into the binder, both the binder and filler were heated. Each filler was added by weight and stirred into the binder until it appeared homogenous.

All samples were poured into a standard 25mm mold in conjunction with the DSR. Each specimen rested for a minimum of 10 minutes prior to testing. In all cases, the disks were screwed into the base plate and spindle prior to initiation of testing. Once the DSR was zeroed, the spindle was raised to enable to application of the asphalt binder sample. The spindle was then lowered to a gap of 1050µm. If the sample required trimming it occurred at this point and then the spindle was lowered to 1000µm. Testing did not initiate until the water bath once again reached the desired testing temperature. After testing, the set screws in the modified spindle were unscrewed and then the spindle raised. The base plate with the specimen was then removed from the DSR. The specimen was then removed from the base plate by unscrewing the set screws holding the bottom of the specimen.

The binders tested with the ceramic disks were tested with the DSR for three different conditioning states. The first examination occurred with unconditioned samples. After the first test, the disk and binder cylinder were placed in a water bath with distilled 25°C water for a period of 24 hours. After 24 hours of saturation, the specimens were retested as conditioned specimens. After the second round of testing, the specimen was wrapped in cellophane and placed in a freezer for 24 hours. After 24 hours in the freezer, the specimen was returned to the water bath to thaw and be conditioned for another 24 hours prior to being retested.

CHAPTER 5 TESTING SETUP

5.1 Testing Parameters – Phase I

The testing parameters of conditioning period, compaction method, and diameter of specimen were examined before Phase II testing commenced. To address the conditioning period, the objective was to determine what number of freeze/thaw cycles will cause the same damage to the Superpave gyratory compactor specimen compared to Marshall specimens for testing the resistance of compacted bituminous mixtures to moisture-induced damage using AASHTO T283. Section 3.2.1 provides a summary for conducting AASHTO T283.

5.2 Testing Parameters – Phase II

In order to address to issues related to testing parameters, past literature was consulted, engineering judgment was exercised, and contacts were utilized and specimens were tested to verify the parameters if needed. The testing parameters are discussed in section 6.2.1 for AASHTO T283 and 6.2.2 for dynamic modulus testing.

5.2.1 AASHTO T283

The only testing parameter for AASHTO T283 testing for Phase II is the number of freeze/thaw cycles determined from Phase I. Additional parameters that are stated in the test procedure are air voids, saturation level, test temperature for freezing and thawing along with time requirements at each temperature, test temperature prior to testing, and loading rate. Refer to section 3.4.1 to the testing parameters that are outlined for AASHTO T283.

5.2.2 Dynamic Modulus

The testing parameters of test temperature, confinement, and stress level were determined prior to testing. The number of freeze/thaw cycles was determined from Phase I. Each parameter is discussed in more detail in the subsequent sections.

5.2.2.1 Test Temperatures

The testing temperatures for intermediate and high temperature dynamic modulus and flow number testing are stipulated by an effective temperature (T_{eff}) reported in NCHRP Report 465 (Witczak et al. 2002). Effective temperature is defined as "a single test temperature at which an amount of permanent deformation would occur equivalent to that measured by considering each season separately throughout the year" (Robinette, 2005). The equation for effective temperature for rutting (dynamic modulus and flow number) is (Robinette 2005):

$$T_{\text{eff rutting}} = 30.8 - 0.12 z_{\text{cr}} + 0.92 \text{ MAAT}_{\text{design}}$$
 (equation 6.1)

where:

 z_{cr} = critical depth down from pavement surface (mm), and

 $MAAT_{design} = mean annual air temperature (°C).$

$$MAAT_{design} = MAAT_{average} + K_{\alpha}\sigma_{MAAT}$$
 (equation 6.2)

where:

 $MAAT_{average} = mean annual air temperature (°C),$

 K_{α} = appropriate reliability level of 95% (1.645), and

 σ_{MAAT} = standard deviation of distribution of MAAT for site location.

The critical depth is to be considered was 20mm from the surface. The MAAT_{average} was collected from the Michigan State Climatology Office from stations that were located in close proximity to where each job was paved. The σ_{MAAT} was found in LTPPBind v2.1 as the high air temperature standard deviation. LTPPBind is a software program that provides guidance on asphalt binder grade selection based on climatic information. The rutting effective test temperatures based on equation 6.1 are summarized in Table 5.1.

Table 5.1 Rutting Effective Test Temperatures

Site	MAAT _{design}	σ_{MAAT}	T _{eff rutting}
Site	(°C)	(°C)	(°C)
M-45 Grand Rapids	10.4	1.1	37.9
Michigan Ave, Detroit 3E10	11.8	1.1	39.2
Michigan Ave, Detroit 4E10	11.8	1.1	39.2
M-66 Battle Creek	10.8	1.1	38.3
I-75 Levering	7.0	1.1	34.8
US-12 MIS	11.6	1.4	39.1
Vandyke	11.8	1.1	39.2
M-21 St. Johns	10.5	1.0	38.0
M-36 Pinckney	11.6	1.2	39.1
I-94 Ann Arbor SMA	11.6	1.2	39.1
Dundee M-50 3E1	11.2	1.3	38.7
M-53 Detroit 8 Mile	11.8	1.1	39.2
US-23 Hartland	10.0	1.1	37.6
Saginaw M-84	10.1	1.2	37.7
Toledo I-75	12.1	1.3	39.5
I-196 Grand Rapids	10.4	1.1	37.9
I-75 Clarkston	10.7	1.0	38.2
M-59 Brighton	10.1	1.0	37.7
M-21 Owosso	10.1	1.0	37.7
BL I-96 Howell	10.1	1.0	37.7
Dundee M-50 4E3	11.2	1.3	38.7

The effective pavement temperature for fatigue was determined by using the Strategic Highway Research Program (SHRP) equation and is shown in the following equations.

$$T_{\text{eff fatigue}} = 0.8 \text{ MAPT} - 2.7$$
 (equation 6.3)

where:

MAPT = mean annual pavement temperature (°C).

$$MAPT = T_{air} - 0.00618 \text{ lat}^2 + 0.2289 \text{ lat } +42.2 (0.9545) - 17.78 \qquad (equation 6.4)$$

where:

MAPT = T_{20mm} = temperature at 20mm depth from pavement surface (°C),

 T_{air} = mean annual air temperature (°C), and

lat = latitude of location (degrees).

The MAAT_{average} from equation 6.2 was used for T_{air} in equation 6.4. The latitude was determined by location of where the project was paved.

Based on the above methods the following effective test temperatures were used for each individual project listed in Table 5.2 for fatigue testing.

Table 5.2 Fatigue Effective Test Temperatures

Site	T _{air}	Latitude	MAPT	T _{eff fatigue}
	(°C)	(degrees)	(°C)	(°C)
M-45 Grand Rapids	10.4	42.88	29.5	20.9
Michigan Ave, Detroit 3E10	11.8	42.42	31.0	22.1
Michigan Ave, Detroit 4E10	11.8	42.42	31.0	22.1
M-66 Battle Creek	10.8	42.37	30.0	21.3
I-75 Levering	7.0	45.57	25.3	17.5
US-12 MIS	11.6	42.23	30.4	21.6
Vandyke	11.8	42.42	31.0	22.1
M-21 St. Johns	10.5	43.02	29.7	21.1
M-36 Pinckney	11.6	42.30	30.8	21.9
I-94 Ann Arbor SMA	11.6	42.30	30.8	21.9
Dundee M-50 3E1	11.2	41.92	30.3	21.5
M-53 Detroit 8 Mile	11.8	42.42	31.0	22.1
US-23 Hartland	10.0	42.58	29.3	20.7
Saginaw M-84	10.1	43.53	28.9	20.4
Toledo I-75	12.1	41.83	31.2	22.3
I-196 Grand Rapids	10.4	42.88	29.5	20.9
I-75 Clarkston	10.7	42.65	30.1	21.4
M-59 Brighton	10.1	42.97	29.4	20.8
M-21 Owosso	10.1	42.97	29.4	20.8
BL I-96 Howell	10.1	42.97	29.4	20.8
Dundee M-50 4E3	11.2	41.92	30.3	21.5

5.2.2.2 Unconfined or Confined Testing

Due to the large volume of specimens that were tested for this project, all specimens were tested unconfined. Past research was consulted and it was found that Witczak et al. (2002) determined that both unconfined and confined testing for the two test configurations yielded high correlations with field recorded pavement deformation and there was no significant statistical difference.

5.2.2.3 Stress Level

Finally the magnitude of the stress level had to be determined for each test setup. A review of the testing conducted as part of NCHRP Report 465 yielded no definitive stress level

for each test setup (Witczak et al. 2002). The stress levels used were a function of test temperature and location. According to Robinette (2005), it was found that the stress level for dynamic modulus was dependent on the materials response to the loading. FHWA recommended that the permanent strain at the different frequencies should be between 75 to 150 micro-strain and the load should be adjusted accordingly. Thus through the conditioning cycles the stress levels were determined for the dynamic modulus test at the intermediate and high temperatures on an iterative basis.

5.2.3 Testing Parameters – Asphalt Pavement Analyzer

Four testing conditions were considered. The first condition was the control set where a set of specimens were tested in air without any moisture conditioning. The second set were tested in water without any moisture conditioning. The third set of specimens were tested in air after moisture saturation and one freeze/thaw cycle. The fourth set of specimens were tested in water after moisture saturation and one freeze/thaw cycle. All specimens endured 8,000 cycles. The hose pressure was set to 700 ± 35 kPa (100 ± 5 PSI), which is the suggested pressure according to the APA manual (APA, 2001). The load applied to each specimen was 445 ± 22 N (100 ± 5 1bs.). Table 5.3 summarizes the test temperatures used for each mix.

Table 5.3 APA Test Temperatures

0:4-	Test	
Site	Temperature	
M-45 Grand Rapids	58	
Michigan Ave, Detroit 3E10	58	
Michigan Ave, Detroit 4E10	64	
M-66 Battle Creek	64	
I-75 Levering	58	
US-12 MIS	64	
Vandyke	64	
M-21 St. Johns	58	
M-36 Pinckney	64	
I-94 Ann Arbor SMA	64	
Dundee M-50 3E1	64	
M-53 Detroit 8 Mile	64	
US-23 Hartland	64	
Saginaw M-84	58	
Toledo I-75	64	
I-196 Grand Rapids	64	
I-75 Clarkston	64	
M-59 Brighton	58	
M-21 Owosso	64	
BL I-96 Howell	64	
Dundee M-50 4E3	64	

5.2.4 Testing Parameters – Dynamic Shear Rheometer

Each binder was split seven ways. One split was original binder, the following 6 splits were mixed with fillers, silica and hydrated lime, at 5%, 10%, and 20% by weight. Each binder or binder/filler was tested in air unconditioned, water unconditioned, air after saturation, water after saturation, air after saturation and one freeze/thaw cycle, and water after moisture saturation and one freeze/thaw cycle. The moisture saturation occurred in a 25°C bath of distilled water. The water bath and air chamber were preheated prior to specimens being placed in the DSR. Once the specimens were placed in the DSR, the water bath and air chamber were reheated prior to initiating testing.

CHAPTER 6 SENSITIVITY STUDY – EVALUATION OF AASHTO T283

6.1 Introduction

The objectives of Phase I was to examine a number of field mixes to find an equivalent number of freeze/thaw cycles that would produce moisture damage effects of the original AASHTO T283 specification, which are based upon Marshall compaction, using the newer Superpave gyratory compaction method. The effects of size and compaction method on results obtained following AASHTO T283 procedure were analyzed. Finally, a new minimum TSR was determined by the analysis instead of using the original TSR ratio of 80% which is based on the original AASHTO T283 specification.

6.2 AASHTO T283 Test Results

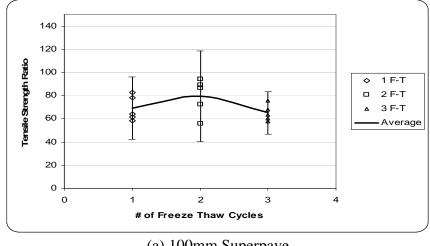
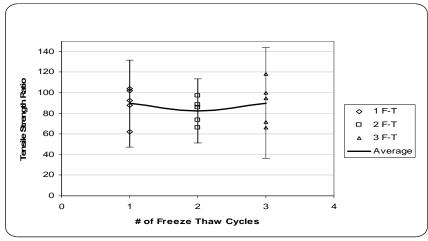
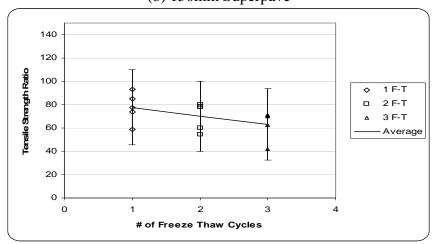
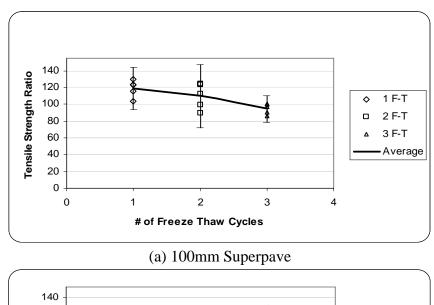

Figures 6.1 through 6.7 show the results of AASHTO T283 testing by displaying the average of five test specimens per freeze/thaw cycle along with the 95% confidence interval about the mean. Most of these projects illustrate that 100mm Marshall specimens produce lower tensile strength ratios (TSRs) than 100mm and 150mm Superpave specimens. For the most part, there is a decrease in TSR with an increasing number of freeze/thaw cycles. These trends are consistent for the two trafficking levels considered. However, some mixes did show an increase in TSR as the number of freeze/thaw cycles increased similar to the previous research conducted by Lottman (1978), Root and Tunicliff (1982), and Epps et al. (2000).

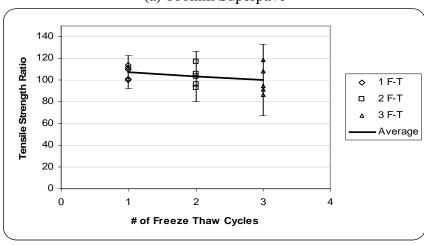
Table 6.1 ranks the mixtures for each project based on the number of freeze/thaw cycles, compaction, and size of specimens. The ranking is on a scale from one to seven where one is most moisture susceptible and seven is least moisture susceptible. In general, the projects had the same ranking based on number of freeze/thaw cycles. Based on compaction method and


diameter size, some projects were more variable and their rankings fluctuated based on compaction method, diameter size, and freeze/thaw cycles. Overall, I-196 Grand Rapids was the most moisture susceptible followed by M-50 Dundee and M-59 Brighton. M-21 Owosso ranked in the middle. The least moisture susceptible mix was BL I-96 Howell and M-21 St. Johns followed by I-75 Clarkston.

Figures 6.8 and 6.9 show that the average lowest TSR were obtained by 100mm Marshall compacted specimens. In general, the 100mm Superpave specimens exhibited the highest TSR. The method and specimens with the lowest standard deviation were the 150mm Superpave specimens. Interestingly, according to Figures 6.1 through 6.7, the 100mm Superpave specimens had the highest level of variability. These results indicate that the 150mm Superpave specimens are more precise, the data is less spread out, than both the TSR values for the Marshall and 100mm Superpave specimens. The coefficient of variation supports the concept of the TSR results being less dispersed for the 150mm Superpave specimens as well.


As suspected, the TSR is lowest on average once the specimens endured three freeze/thaw cycles and the highest TSRs occurred after only one freeze/thaw cycle. The coefficients of variation indicate that for all three compaction and size categories, three freeze/thaw cycles led to less precise TSR values, while the most precise readings are obtained after one freeze/thaw for Marshall and 150mm Superpave and two freeze/thaw cycles for 100mm Superpave specimens, respectively.




(b) 150mm Superpave

(c) 100mm Marshall

Figure 6.1 M-50 Dundee Average TSR versus Number of Freeze/thaw Cycles with 95% **Confidence Intervals**

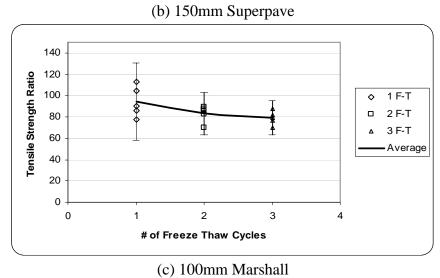
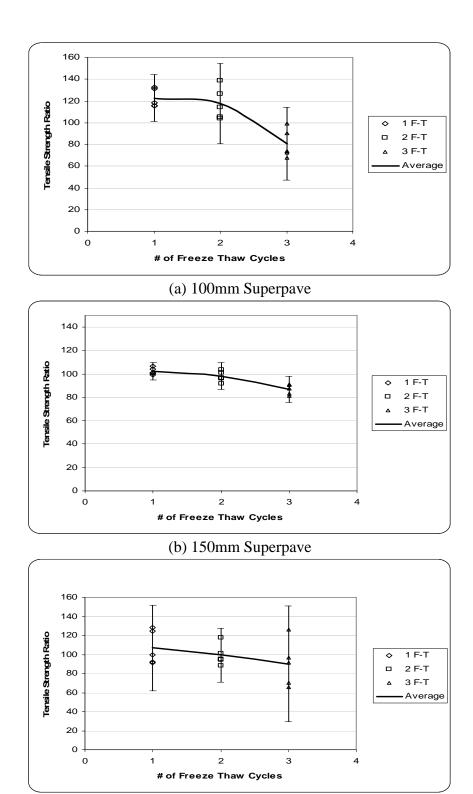
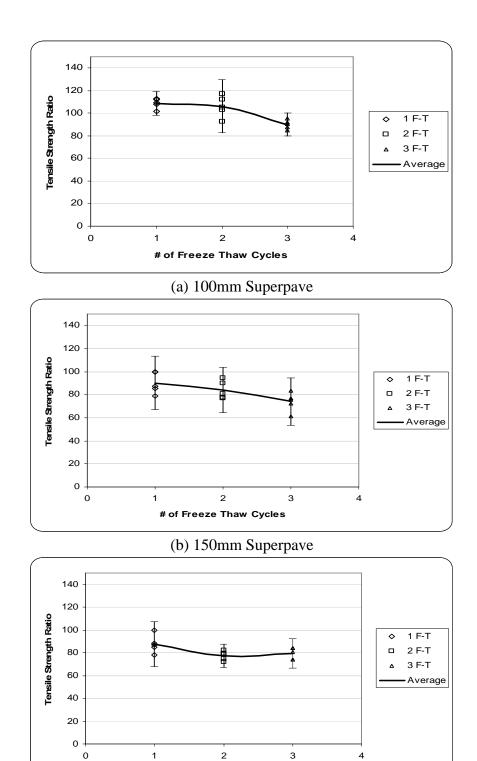




Figure 6.2 M-21 St. Johns Average TSR versus Number of Freeze/thaw Cycles with 95% Confidence Intervals

(c) 100mm Marshall Figure 6.3 BL I-96 Howell Average TSR versus Number of Freeze/thaw Cycles with 95% Confidence Intervals

(c) 100mm Marshall
Figure 6.4 M-21 Owosso Average TSR versus Number of Freeze/thaw Cycles with 95%
Confidence Intervals

of Freeze Thaw Cycles

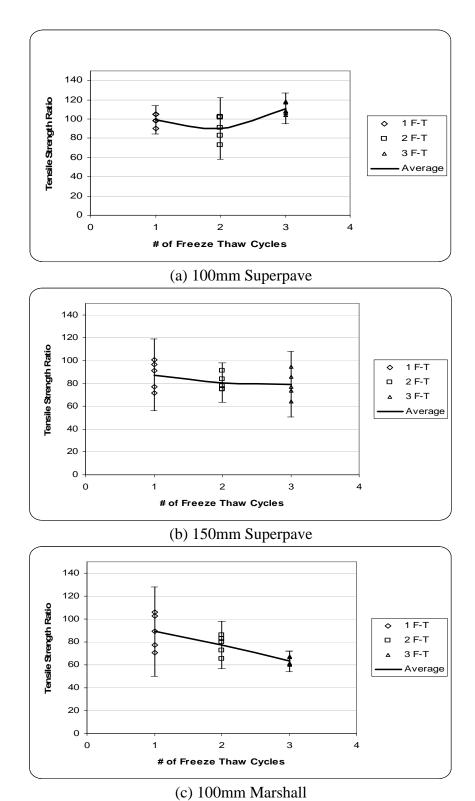
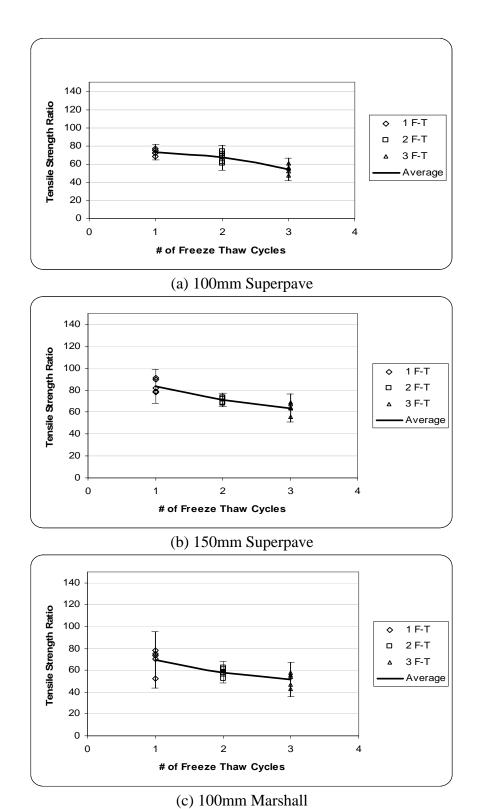
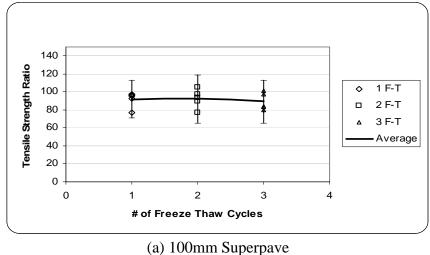
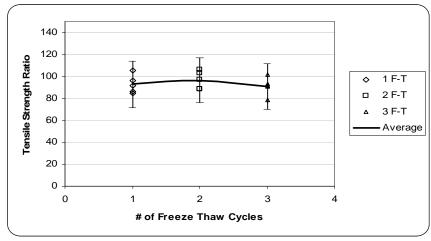
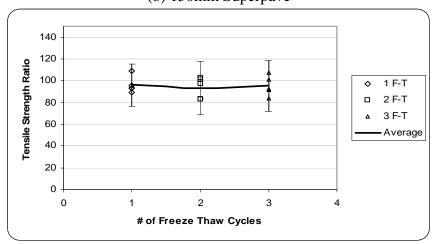


Figure 6.5 M-59 Brighton Average TSR versus Number of Freeze/thaw Cycles with 95% Confidence Intervals


Figure 6.6 I-196 Grand Rapids Average TSR versus Number of Freeze/thaw Cycles with 95% Confidence Intervals

(b) 150mm Superpave

(c) 100mm Marshall

Figure 6.7 I-75 Clarkston Average TSR versus Number of Freeze/thaw Cycles wit 95% **Confidence Intervals**

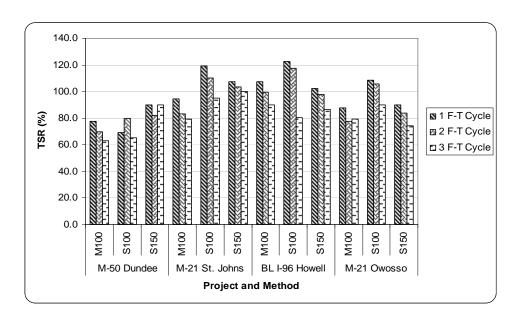


Figure 6.8 Average TSR Results for Traffic Level ≤3,000,000 ESAL's

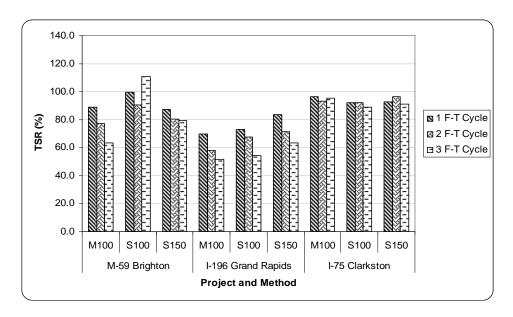


Figure 6.9 Average TSR Results for Traffic Level >3,000,000 ESAL's

Table 6.1 Ranking of Projects Based on TSR

Project	Average TSR for S100			Average TSR for M100			Average TSR for S150		
Fioject	TSR 1F-T	TSR 2F-T	TSR 3F-T	TSR 1F-T	TSR 2F-T	TSR 3F-T	TSR 1F-T	TSR 2F-T	TSR 3F-T
M-50 Dundee	1	2	2	2	2	3	3	3	5
BL I-96 Howell	7	7	3	7	7	6	6	6	4
M-21 Owosso	5	5	5	3	4	5	4	4	2
M-59 Brighton	4	3	7	4	3	2	2	2	3
I-196 Grand Rapids	2	1	1	1	1	1	1	1	1
I-75 Clarkston	3	4	4	6	6	7	5	5	6
M-21 St. Johns	6	6	6	5	5	4	7	7	7

6.3 Analysis of Results

Two approaches were used to analyze the above data. The first approach is a statistical approach that analyzes the effects of project, compaction method, and number of freeze/thaw cycles. The second approach used probabilistic analyses to determine a new minimum TSR ratio. The current minimum TSR ratio used is 80% for 100mm Marshall compacted specimens.

The first type of statistical test used is the two-way ANOVA with no interaction to compare the dependent variable, TSR, and two independent factors are project and method of compaction (100mm Superpave, 150mm Superpave, and 100mm Marshall). The goal of this analysis is to determine the number of freeze/thaw cycles required to attain an equivalent amount of damage of one freeze/thaw cycle for the 100mm Marshall specimens for 150mm Superpave gyratory compacted specimens. The compaction method, number of freeze/thaw cycles, and the change in size of the specimens are considered.

Five two-way ANOVAs with no interaction were constructed based on the amount of available data.

 100mm Marshall versus 100mm Superpave versus 150mm Superpave at one freeze/thaw cycle shows that the TSRs are statistically the same based on method of compaction. 100mm Marshall versus 100mm Superpave versus 150mm Superpave at two

freeze/thaw cycles show that the TSRs are statistically the same based on method

of compaction.

100mm Marshall versus 100mm Superpave versus 150mm Superpave at three

freeze/thaw cycles show that the TSRs are statistically the same based on method

of compaction.

100mm Marshall at one freeze/thaw cycle versus 100mm Superpave at two

freeze/thaw cycles versus 150mm Superpave at two freeze/thaw cycles show that

the TSRs are statistically the same based on method of compaction.

100mm Marshall at one freeze/thaw cycle versus 100mm Superpave at three

freeze/thaw cycles versus 150mm Superpave at three freeze/thaw cycles show that

the TSRs are statistically different based on method of compaction.

Based on the results of the two-way ANOVA, in order to achieve the same moisture

damage in the 100mm Marshall specimens, three-freeze/thaw cycles are needed for the 150mm

and 100mm Superpave specimens. Generally, a highway agency does not have sufficient time to

conduct three freeze/thaw cycles for each paving project during a construction season, therefore

the criteria for the TSR ratio needs to be adjusted so one freeze/thaw cycle can still be used.

A second statistical analysis was undertaken to look at the effects of wet strength versus

dry strength for each project. A two-sample t-test was used to compare the mean dry strength to

the mean wet strength. The following hypothesis was used:

 H_o : Dry Strength = Wet Strength

 H_A : Dry Strength \neq Wet Strength

 $\alpha = 0.05$

95

Table 6.2 gives the results of the two-sample t-tests along with the mean TSR for each group. The results show that when dry and wet strengths are statistically different, the average TSR is quite low or close to the threshold value of 80% except in some limited cases. The shaded in cells show those projects that have statistically different strengths for each combination of compaction, diameter, and number of freeze/thaw cycles endured.

Table 6.2 Results of Two-Sample Paired t-Tests

	100 mm Marshall							
Project	1 Freeze-Th	aw Cycle	2 Freeze-Th	aw Cycle	3 Freeze-Th	aw Cycle		
	Paired t-Test Results	Average TSR (%)	Paired t-Test Results	Average TSR (%)	Paired t-Test Results	Average TSR (%)		
M-50 Dundee	Statistically Different	78	Statistically Different	70	Statistically Different	63		
M-21 St. Johns	Statistically the Same	94	Statistically Different	83	Statistically Different	79		
BL I-96 Howell	Statistically the Same	107	Statistically the Same	99	Statistically the Same	90		
M-21 Owosso	Statistically Different	88	Statistically Different	77	Statistically Different	79		
M-59 Brighton	Statistically the Same	89	Statistically Different	77	Statistically Different	63		
I-196 Grand Rapids	Statistically Different	70	Statistically Different	58	Statistically Different	51		
I-75 Clarkston	Statistically the Same	96	Statistically the Same	93	Statistically the Same	95		
			100 mm Su	perpave				
Project	1 Freeze-Th		2 Freeze-Th		3 Freeze-Th	·		
	Paired t-Test Results	Average TSR (%)	Paired t-Test Results	Average TSR (%)	Paired t-Test Results	Average TSR (%)		
M-50 Dundee	Statistically Different	69	Statistically the Same	80	Statistically Different	65		
M-21 St. Johns	Statistically Different	119	Statistically the Same	110	Statistically the Same	95		
BL I-96 Howell	Statistically Different	123	Statistically Different	118	Statistically Different	81		
M-21 Owosso	Statistically Different	109	Statistically the Same	106	Statistically Different	90		
M-59 Brighton	Statistically the Same	99	Statistically the Same	90	Statistically Different	111		
I-196 Grand Rapids	Statistically Different	73	Statistically Different	67	Statistically Different	54		
I-75 Clarkston	Statistically the Same	92	Statistically the Same	92	Statistically the Same	89		
			150 mm Su					
Project	1 Freeze-Th	•	2 Freeze-Th	aw Cycle	3 Freeze-Thaw Cycle			
	Paired t-Test Results	Average TSR (%)	Paired t-Test Results	Average TSR (%)	Paired t-Test Results	Average TSR (%)		
M-50 Dundee	Statistically the Same	90	Statistically the Same	82	Statistically the Same	90		
M-21 St. Johns	Statistically the Same	107	Statistically the Same	103	Statistically the Same	100		
BL I-96 Howell	Statistically the Same	102	Statistically the Same	98	Statistically Different	87		
M-21 Owosso	Statistically the Same	90	Statistically Different	84	Statistically Different	74		
M-59 Brighton	Statistically the Same	87	Statistically Different	81	Statistically Different	79		
I-196 Grand Rapids	Statistically Different	84	Statistically Different	71	Statistically Different	64		
I-75 Clarkston	Statistically the Same	93	Statistically the Same	96	Statistically the Same	91		

A probabilistic analysis was used to determine a new minimum TSR for HMA using 100 and 150mm Superpave gyratory compacted specimens. The lognormal distribution based on the Kolmogorov-Smirnov One-Sample Test using a p-value of 0.05 was selected for the TSR for the different compaction methods and number of freeze/thaw cycles since a lognormal distribution was applicable to all datasets investigated. In addition, a lognormal distribution is an appropriate selection since the TSR cannot be less than zero. The outputs containing the lognormal distribution and the appropriate test statistics can be seen in Appendix C and summarized below in Table 6.3.

Table 6.3 Goodness of Fit Statistics for Phase I Distributions

Compaction	Diameter Size	# of Freeze-	Kolmogorov-Smirnov Statistic	a volue
Method	(mm)	Thaw Cycles	Lognormal Distribution	p-value
Superpave	150	1	0.15094143	0.045
Superpave	150	2	0.10983981	>0.150
Superpave	150	3	0.10919085	>0.150
Superpave	100	1	0.10134991	>0.150
Superpave	100	2	0.14599732	0.058
Superpave	100	3	0.07556771	>0.150
Marshall	100	1	0.13930827	0.084
Marshall	100	2	0.11497959	>0.150
Marshall	100	3	0.13629187	0.096

Historically, the Michigan Department of Transportation uses a TSR value of 80% after one freeze/thaw cycle for 100mm Marshall specimens as the specification criteria for determining moisture susceptibility (Barak 2005). To determine an equivalent point with 150mm Superpave specimens, several lognormal cumulative probability plots were created. Each cumulative probability plot consisted of pooled strength data for each combination of compaction and diameter. The point on the 100mm Marshall cumulative probability plot that coincided with a TSR value of 80% was determined. A horizontal line was then extended from that point to intersect with the cumulative probability plot for the 150mm Superpave specimens tested after one freeze/thaw cycle. The point of intersection corresponded to a TSR value of 87%, as demonstrated in Figure 6.10. Thus, indicating that a threshold of 87% for TSR should be employed to maintain equivalent standards with the Marshall specimen usage. Following the same procedure, a threshold of 85% is recommended for 100mm Superpave compacted specimens, as can be seen in Figure 6.11. Figure 6.12 shows the current 80% TSR specification for 150mm Superpave gyratory compacted specimens is 70% TSR for 100mm Marshall compacted specimens. These three figures illustrate that the current TSR specification of 80%

needs to be changed if the same acceptance rate of mixtures is to be maintained (Bausano et al. 2006, Kvasnak 2006)

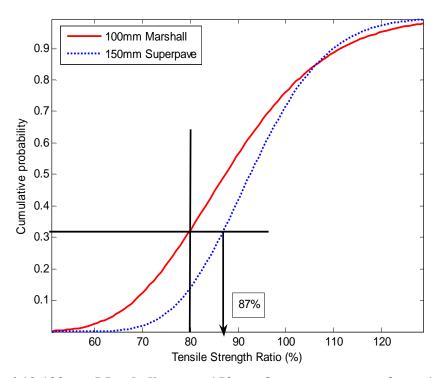
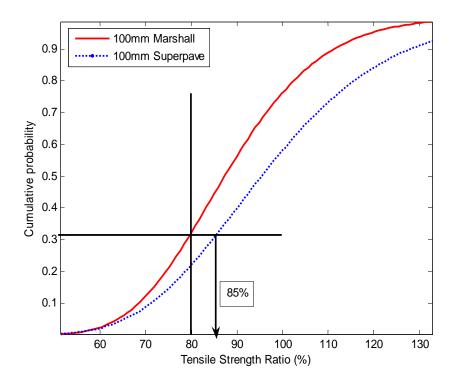



Figure 6.10 100mm Marshall versus 150mm Superpave at one freeze/thaw cycle

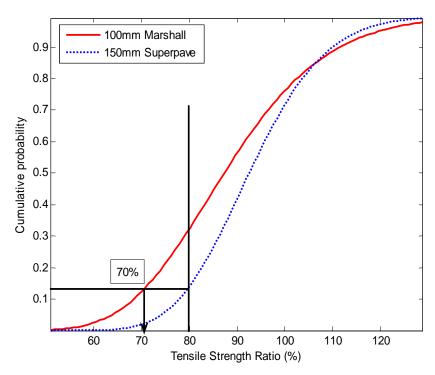


Figure 6.12 100mm Marshall versus 150mm Superpave at one freeze/thaw cycle

6.4 Conclusions

In this sensitivity study, the factors affecting wet strength of a specimen and new thresholds for AASHTO T283 when Superpave compaction method is employed in lieu of the Marshall compaction method are identified. Testing included 100mm Marshall, 100mm Superpave, and 150mm Superpave specimens. Four conditions of each mix type for every compaction and diameter combination were considered. The control condition was the dry state of a specimen and the other conditions were strength of conditioned specimens after one, two, or three freeze/thaw cycles.

AASHTO T283 was developed based on 100mm Marshall compacted specimens. With the transition from 100mm Marshall compacted specimens to 150mm Superpave compacted specimens, it was felt that the requirements outlined in AASHTO T283 should be re-evaluated. It was discovered that three freeze/thaw cycles for conditioning is needed when using specimens

created using 150mm Superpave specimens. However, to continue using one freeze/thaw cycle and maintain the same probability level as attained with a TSR value for 80% for 100mm Marshall compacted specimens, a TSR value of 87% and 85% should be used for 150mm and 100mm Superpave compacted specimens, respectively. If an 80% TSR for 150mm Superpave specimens is used, this would correspond to a TSR ratio of 70% for 100mm Marshall specimens (Bausano et al 2006, Kvasnak 2006).

CHAPTER 7 PRELIMINARY BINDER STUDY TEST RESULTS

7.1 Introduction

Statistical analyses were conducted to determine which factors significantly affected complex shear modulus results when using modified DSR parts. Both original binders and mastics were evaluated. The main type of analysis used was ANOVA with level of significance of 0.05. P-values from ANOVA tables will be presented. It should be remembered that a low (in this case below 0.05) indicates a significant factor, while a high p-value is associated with an insignificant factor.

7.2 Gap Size and Interface Selection

It was hypothesized that ceramic discs would be a better interface for moisture susceptibility testing of asphalt binders, and thus the hypothesis needed to be tested. Both ceramic and stainless steel interfaces were tested using AAA-1 and AAM-1 asphalt binders at different gap sizes. As mentioned earlier, original binders were used for all gap size tests while binders with fillers were only used for testing with a 500-μm and 1000μm gap. The gap sizes evaluated were 200μm, 300μm, 500μm, and 1000μm for both binders and interface types.

It has been hypothesized that a smaller gap size would yield more reliable results since a small gap size would be closer to actual film thicknesses found in pavements. However, the issue that emerged with the smaller gap size was unrepeatable results. It is speculated that one of the issues contributing to the lack of repeatability is non-parallel plates. DSRs were designed based on parallel plate theory, which assumes the surface of a spindle is parallel to the surface of a base plate. If a plate is slightly askew, thus violating the parallel plate requirement, readings may not be accurate. Lack of parallelism has a less significant effect when a larger versus a smaller gap size when the degree of skewness is the same gap size is used. The effects of an

angle created by an askew plate are magnified when a small gap size is used (Dongre 2006). Table 7.1 summarizes the repeatability analysis performed on the 200µm and 300µm gap size. Cells labeled "Yes" are results that were repeatable, whereas ones labeled "No" were not repeatable, based on a 5% level of significance. It can be seen that over half of the tests conducted were unrepeatable. The lack of repeatability indicates that a different gap sizes should be considered.

Table 7.1 Repeatability of 200µm and 300µm Gap Size

Complex Modulus										
			Origina	l Binder			RTFO Aged Binder			
Binder	Bath	200 micrometer		300 micrometer		200 micrometer		300 micrometer		
Binder Bath		Stainless Steel	Ceramic	Stainless Steel	Ceramic	Stainless Steel	Ceramic	Stainless Steel	Ceramic	
AAA-1	Water	No	Yes	No	No	No	No	Yes	No	
AAA-1	Air	Yes	No	No	No	Yes	No	No	Yes	
AAM-1	Water	Yes	Yes	Yes	No	Yes	No	Yes	Yes	
AAM-1	Air	No	Yes	No	No	No	Yes	Yes	No	

After examining the 200μm and 300μm gap sizes, 500μm and 1000μm gap sizes, evaluation of an appropriate gap size occurred. It should be noted that 1000μm is the current standard gap size for binders tested using the Superpave grading system. Both the 500μm and 1000μm gap sizes were statistically viable gap sizes for the unaged original binders.

Comparisons between a stainless steel interface and a ceramic one yielded varying results based on gap size. No statistical difference was observed for the complex shear modulus and phase angle results between a stainless steel and ceramic interface for 200µm and 300µm gap sizes. The inability of the test to distinguish between the two interfaces could be associated with a high level of variability of measurements acquired at these smaller gap sizes. Statistical differences between rheological properties of specimens tested with ceramic versus those tested with steel existed when gap sizes of 500µm and 1000µm were used for original binders.

Additional testing was conducted with the 500µm and 1000µm gap sizes using filler modified asphalt binders. Two fillers were selected; hydrated lime and a silica based ones.

500μm and 1000μm gap sizes were used to test AAA-1 and AAM-1 with 3 percentage levels of the two fillers. During testing with fillers, it was discovered that some of the binders with silica could not be measured for complex shear modulus and phase angle at the 500μm gap size. Further difficulties were faced with the 500μm gap size with some silica modified binders that yielded unrepeatable results. These issues were not observed with the 1000μm, hence the selection of a 1000μm gap size for testing with modified DSR parts.

Multiway ANOVAs were employed to determine which factors significantly contribute to different complex shear modulus values. The main effects considered were binder type (AAA-1 or AAM-1), filler type (hydrated lime or silica), percent of filler (5%, 10%, or 20%), disc material (stainless steel or ceramic), gap size (500μm or 1000μm), and testing environment (water bath or air chamber). Table 7.2 summarizes the calculated p-values obtained from an ANOVA. All of the main effects considered were deemed statistically significant. This implies that each of these factors contributed to changes in complex shear modulus readings. Interaction effects were also considered within this ANOVA. Interestingly, the interaction between binder type and filler type was not considered a significant contributor to the complex shear modulus variability. It has been speculated that chemical compatibility between binders and fillers would results in significantly different complex shear modulus values. It is hypothesized that certain levels of filler accounts for significant levels of complex shear modulus variability. It should be noted that the interaction between binder and percent level does not distinguish between hydrated lime and silica. Additional analysis will be presented that examines this more complex relationship. The interaction between binder type and disc type was also regarded as significant with respect to complex shear modulus variability. The precise reasoning for this interaction is not clear, but it is speculated that either absorption of binder into a disc or friction created

between a disc and binder results in different complex shear modulus readings. Since filler and disc interactions do not have an effect on complex shear modulus variability friction may not be the cause of low p-values for binder and disc interactions. Based on filler and disc not being a cause, it is likely possible that the absorption of the binder into a disc resulted in a low p-value. Another surprising relationship that did not significantly affect complex shear modulus measurements was the interaction between binder type and environmental testing condition (Kvasnak 2006).

Table 7.2 P-Values of Main and Interaction Effects on Complex Shear Modulus Results

Effect	P-Values
binder	<.0001
filler	<.0001
percent	<.0001
disc	0.0003
gap	<.0001
bath	<.0001
binder*filler	0.3524
binder*percent	0.0229
binder*disc	0.0033
filler*percent	0.0041
filler*disc	0.6379
filler*bath	0.3286
filler*gap	<.0001
binder*bath	0.4009

7.3 Saturation Effects on Asphalt Binders

Saturation effects were analyzed by testing unsaturated, saturated, saturated plus one freeze/thaw cycle specimens. For this testing only ceramic insets were used in the modified DSR parts. Analyses were conducted to determine if saturation or saturation plus one freeze/thaw cycle has an effect on complex shear modulus values. According to the analysis, there is a significant difference between unsaturated and saturated specimens. However, there is no statistical difference between saturation plus one freeze/thaw versus either unsaturated or saturated specimens. This would indicate that it is sufficient to test just unsaturated and saturated

specimens. More freeze/thaw cycles could be examined, but to remain consistent with current freeze/thaw testing procedures for HMA mix, only one freeze/thaw cycle was considered.

The viscous and elastic moduli results were examined next. For the AAA-1 binder, it was found that the viscous modulus changed much more than the elastic modulus when comparing between unsaturated, saturated, and saturated plus one freeze/thaw cycle. The significant difference between viscous moduli for AAM-1 asphalt binders was less than that of AAA-1. Both AAA-1 and AAM-1 yielded statistically different elastic moduli values for saturated and unsaturated specimens. Testing of binders also found that the elastic moduli values for saturated and saturated plus one freeze/thaw were statistically equivalent. The analysis shows that the viscous component of asphalt binders changes the most with saturation in comparison to the elastic component. In general, saturation caused the complex shear modulus to decrease for the original binders. Table 7.3 lists the p-values obtained by conducting mean comparisons between the listed groups (Kvasnak 2006).

Table 7.3 P-Values of Condition Comparisons of Original Binders

Binder	Condition Comparison	Elastic Modulus	Viscous modulus
	Saturated vs Unsaturated	0.0006	0.0002
AAA-1	Saturated vs Saturated Plus Freeze-Thaw	0.1526	0.0018
	Unsaturated vs Saturated Plus Freeze-Thaw	0.1530	0.0020
	Saturated vs Unsaturated	0.0007	0.0006
AAM-1	Saturated vs Saturated Plus Freeze-Thaw	0.6172	0.0304
	Unsaturated vs Saturated Plus Freeze-Thaw	0.0262	0.0031

7.4 Delay Effects on Asphalt Binders

Some of the modified binders were used to see if there was any effect on the specimens if left in a DSR. The time intervals considered were 0, 5, 10, and 20 minutes. Binders were tested at their high PG temperature. Both stainless steel and ceramic discs were employed in determining delay effects on complex shear modulus values. Comparisons were made between complex shear modulus values at different delay times. Table 7.4 summarizes the results of these comparisons. According to the results, there is no significant statistical difference in testing a specimen that has been in a water bath anywhere from zero to 20 minutes (Kvasnak 2006).

Table 7.4 P-Values Comparing Delay Times

Time	
Comparison	P-value
(minutes)	
0 vs 5	0.8697
0 vs 10	0.9158
0 vs 20	0.5386
5 vs 10	0.9740
5 vs 20	0.4639
10 vs 20	0.5330

7.5 AAA-1 and AAM-1 DSR Testing Conclusions

A new moisture susceptibility test was developed using modified DSR parts. Testing was conducted to determine if material interface affects complex shear modulus results. It was determined that material interface does affect complex shear modulus results. Hence for the new test protocol, ceramic discs would be used to allow for water to access the top of a binder sample in addition to the circumference of a sample. Further testing was conducted to establish an appropriate gap size for a new testing procedure. The gap size selected was 1000µm. Subsequent testing indicated that the new test procedure is sensitive to binder type and addition of filler. The test also appears to be able to distinguish between filler type. Additional testing

indicated that statistically different complex shear modulus results were obtained from unsaturated asphalt binder samples versus saturated specimens. However, no additional differences were observed with the samples were moisture saturated and had endured one freeze/thaw cycle. There were also no statistical differences in complex shear modulus readings when leaving a specimen in a heated water bath anywhere from zero to 20 minutes prior to testing.

Based on laboratory testing and statistical analysis a new test procedure was established in this report. Specimens would be tested first unsaturated with ceramic discs at a gap of 1000µm. Second the specimens would soak in a water bath for a period of 24 hours at 25°C. After 24 hours of soaking, specimens would be tested again in a DSR using ceramic discs. Table 7.2 summarized results from an ANOVA indicating that binder type, filler type, percent of filler, disc material, gap size, testing environment, interaction between binder type and percent of filler, interaction between binder type and disc material, and interaction between filler type and gap size were all deemed significant factors contributing to differences in complex shear modulus (Kvasnak 2006).

CHAPTER 8 TESTING OF MICHIGAN MIXES FOR MOISTURE DAMAGE – PHASE II

8.1 Introduction

This chapter discusses the results of the expanded experimental plan which includes twenty-one HMA mixtures that were sampled throughout the state of Michigan. The test results for conducting AASHTO T283 and the proposed test procedure using dynamic modulus will be provided. The chapter will also provide the analysis of the testing results using statistical procedures to analyze the data and to look at properties that may affect moisture damage including gradation, nominal maximum aggregate size NMAS, traffic, polymer modification, aggregate type, permeability, asphalt content, FAA, RAP, and frequency (for dynamic modulus only).

8.2 Experimental Plan

The Phase II expanded experimental plan considers different mix types, aggregate sources, and laboratory test systems. The experimental plan includes two integrated plans: one for the mixes and one for the planned laboratory tests. A sensitivity study on the effects of specimen size and compaction method was accomplished in the Phase I testing to determine the amount of conditioning that should be done on larger Superpave compacted specimens. Table 8.1 below outlines the expanded experimental plan.

Table 8.1 Expanded Experimental Plan for Phase II Projects

PHASE 2 MOISTURE						
NMAS (mm)	Traffic	Level (ESAL's)				
NMAS (IIIII)	≤ 3,000,000	>3,000,000				
	Limestone - M50 Dundee	Limestone - M59 Brighton				
	Limestone - M36 Pinckney	Limestone - Michigan Ave. Detroit				
25.0 or 19.0	Gravel - M45 Grand Rapids	Limestone - Vandyke Detroit				
	Gravel - M21 St. Johns	Limestone - US23 Hartland				
	Limestone - M84 Saginaw	Gravel - I-75 Levering Road				
	Limestone - BL96 Howell	Limestone - I-196 Grand Rapids				
	Gravel - M21 Owosso	Slag/Gabbro - I-75 Clarkston				
12.5 or 9.5	Gravel - M66 Battle Creek	Gravel - M53 Detroit				
	Limestone - M50 Dundee	Limestone - Michigan Ave. Detroit				
	Limestone - US12 MIS	Gabbro I-75 Toledo (in MI)				
SMA	N/A	Gabbro - I-94 SMA Ann Arbor				

Table 8.2 below outlines the laboratory testing experimental plan. The test temperature and moisture conditioning of the specimens is determined in the Phase I sensitivity study. The proposed methods of determining moisture susceptibility will be compared to the current method of determining moisture susceptibility from which any conclusions and recommendations will be drawn upon.

Table 8.2 Laboratory Experimental Plan for Phase II

		Unconditioned	Conditioned
	AASHTO T283	XXXXX	XXXXX
	Dynamic Complex Modulus	XXX	XXX
Test System	Asphalt Pavement Analyzer	XXX	XXX
Test	Dynamic Shear Rheometer – Asphalt Binder	XXX	XXX
	Dynamic Shear Rheometer – Mastic	XXX	XXX

8.3 AASHTO T283 Test Results

Figures 9.1 and 9.2 illustrate the variability of TSRs among each project. Ninety-five percent confidence intervals around the mean were fit to the data. Figure 8.1 shows the TSRs for low volume roads (≤3,000,000 ESALs) and Figure 8.2 shows the TSRs for high volume roads (>3,000,000 ESALs). The data shows that generally higher volume roads exhibited higher TSRs than lower volume roads. Figure 8.3 shows good agreement (correlation) between dry strength and wet strength. It appears that at low strengths the regression line is close to the line of equality but as the strength increases, the regression line diverges away from the line of equality.

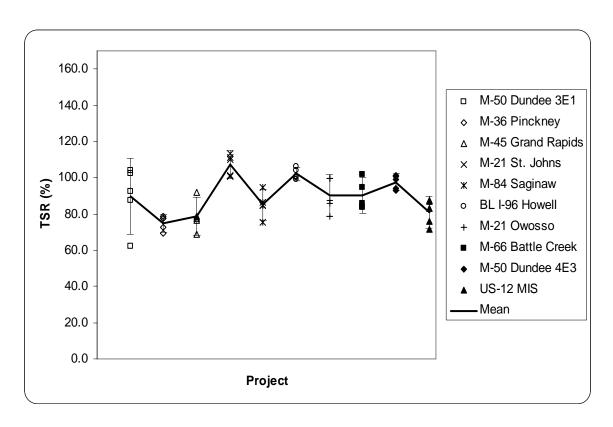
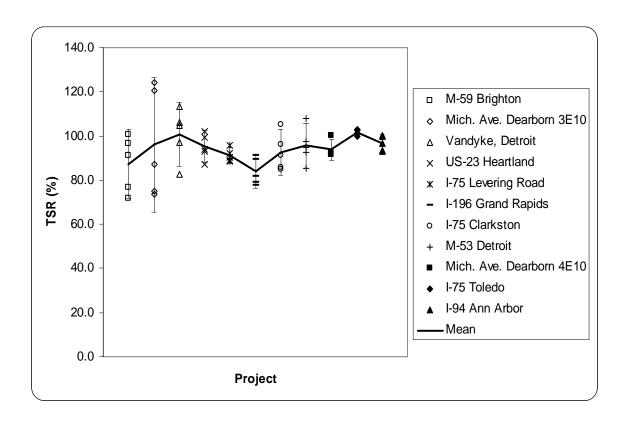



Figure 8.1 AASHTO T283 Test Results for Traffic Level ≤3,000,000 ESALs with 95% Confidence Intervals

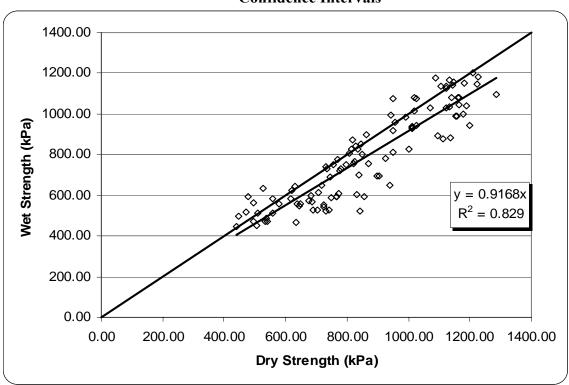


Figure 8.2 AASHTO T283 Test Results for Traffic Level >3,000,000 ESALs with 95% Confidence Intervals

Figure 8.3 Dry Strength versus Wet Strength (Pooled Data)

8.4 Dynamic Modulus Test Results

Figures 8.4 to 8.15 illustrate the variability of E* ratios at each frequency among each project. Ninety-five percent confidence intervals around the mean were fit to the data. Figures 8.4 to 8.9 show the E* ratios for low volume roads (≤3,000,000 ESALs) and Figures 8.10, to 8.15 show the E* ratios for high volume roads (>3,000,000 ESALs). The test temperature that each project was conducted at was the effective test temperature for rutting. The data shows that higher volume roads have higher E* ratios than the lower volume roads. It should also be noted that E* ratio cannot be negative and the confidence interval cannot be negative. Figure 8.16 shows a good agreement between unconditioned E* values and moisture conditioned E* values. It appears that at low E* values the regression line is close to the line of equality but as the E* increases, the regression line diverges from the line of equality similar to that of AASHTO T283

strength values. It was noticed that the 95% confidence intervals were rather broad, and this is due to the fact that only three samples were tested. Additional testing of the samples is needed in order to reduce the variability. NCHRP Report 465 concludes that a coefficient of variation (COV) less than 30% is good, and the data shown in the figures below exhibit COV values below this level but evaluation of the 95% confidence intervals, much variability still exists. The variability is due to the fact that only three specimens were tested for the control group and three specimens for the conditioned group. Since the specimens that have been conditioned are prone to additional variabilitydue to the conditioning, additional specimens should be tested in the future to reduce the variability.

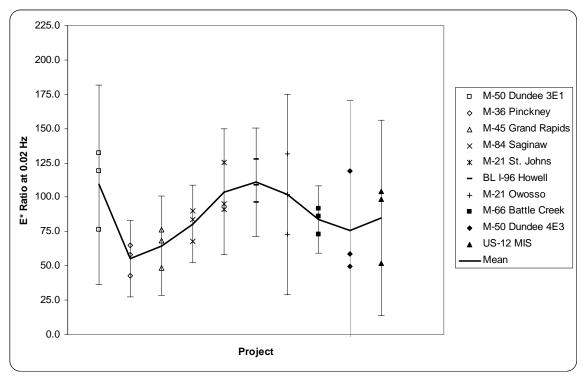


Figure 8.4 Dynamic Modulus With Freeze/Thaw Conditioning Test Results for Traffic Level ≤3,000,000 ESALs with 95% Confidence Intervals

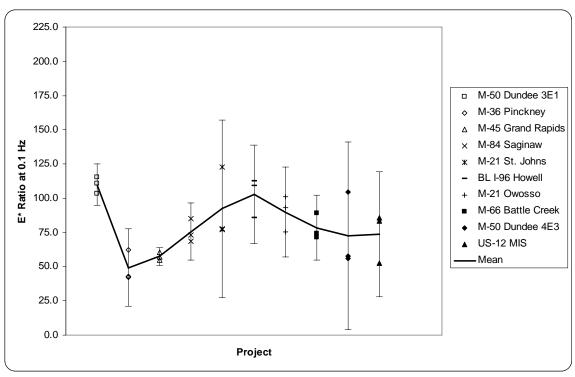


Figure 8.5 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level ≤3,000,000 ESALs with 95% Confidence Intervals

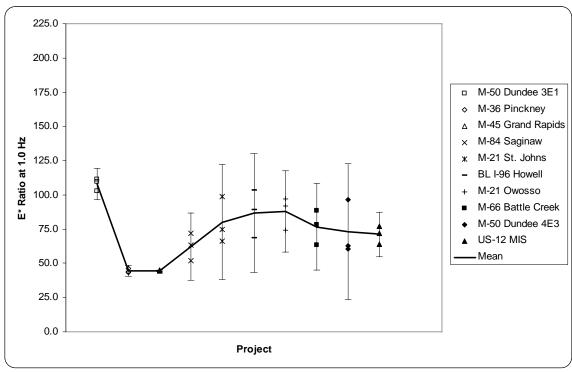


Figure 8.6 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level ≤3,000,000 ESALs with 95% Confidence Intervals

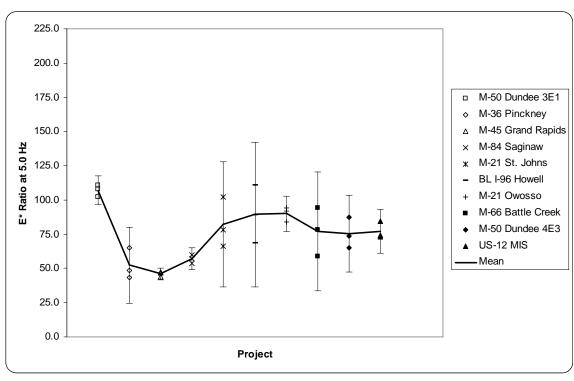
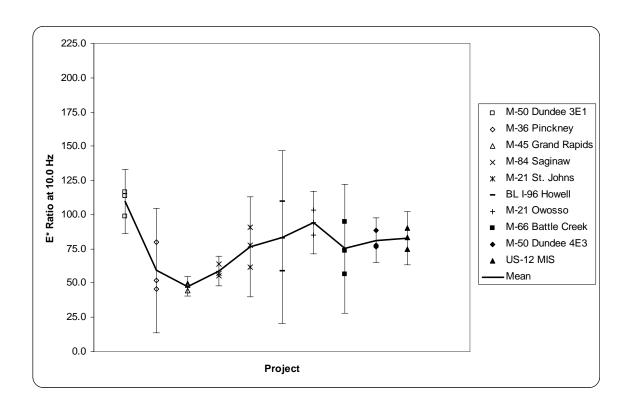
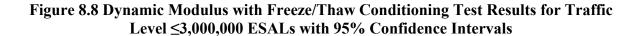




Figure 8.7 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level ≤3,000,000 ESALs with 95% Confidence Intervals

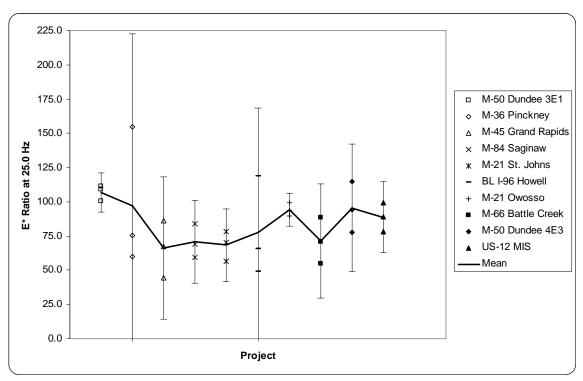


Figure 8.9 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level ≤3,000,000 ESALs with 95% Confidence Intervals

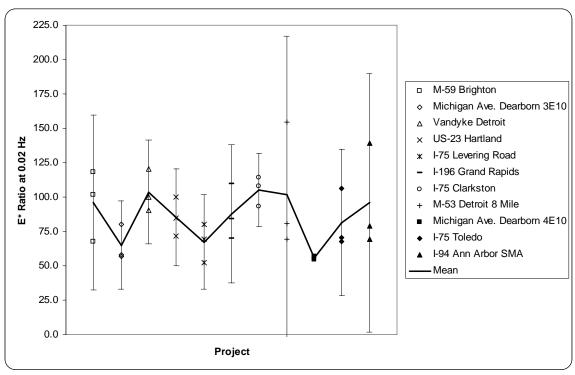


Figure 8.10 Dynamic Modulus With Freeze/Thaw Conditioning Test Results for Traffic Level >3,000,000 ESALs with 95% Confidence Intervals

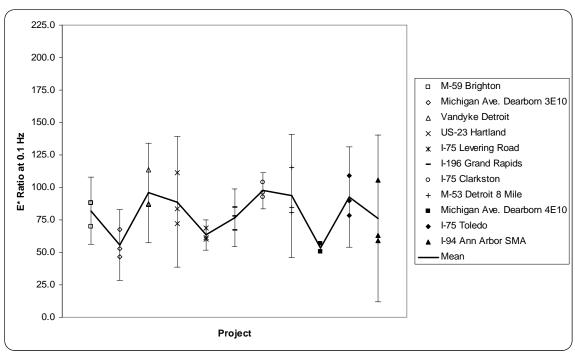


Figure 8.11 Dynamic Modulus with Freeze/thaw Conditioning Test Results for Traffic Level >3,000,000 ESALs with 95% Confidence Intervals

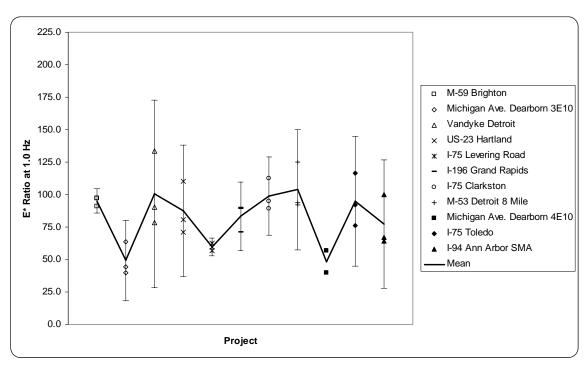


Figure 8.12 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level >3,000,000 ESALs with 95% Confidence Intervals

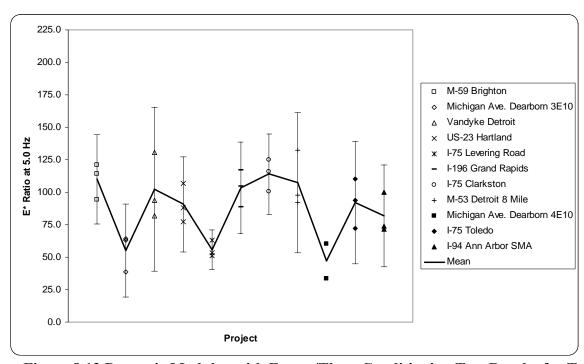


Figure 8.13 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level >3,000,000 ESALs with 95% Confidence Intervals

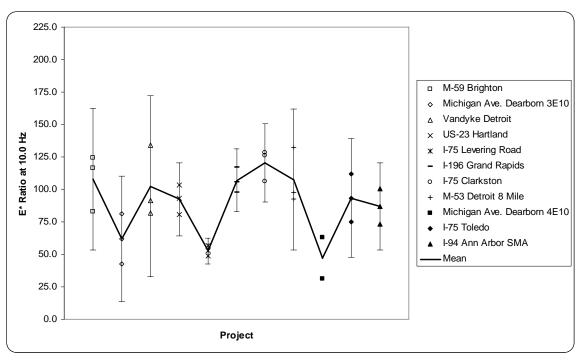


Figure 8.14 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level >3,000,000 ESALs with 95% Confidence Intervals

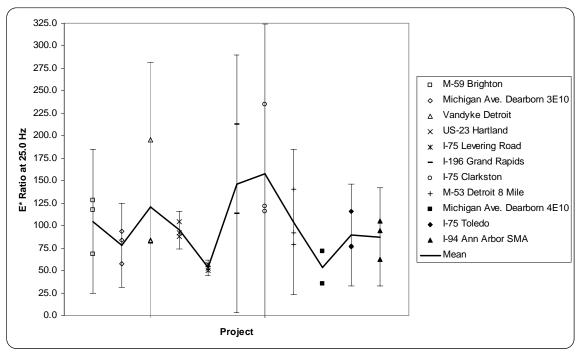


Figure 8.15 Dynamic Modulus with Freeze/Thaw Conditioning Test Results for Traffic Level >3,000,000 ESALs with 95% Confidence Intervals

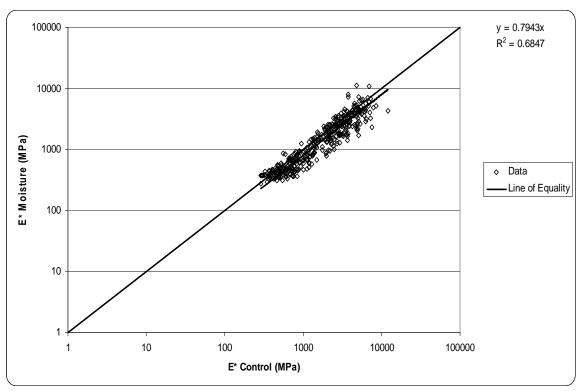


Figure 8.16 Dry E* versus Wet E* (Pooled Data)

8.5 DSR Test Results

As with the SHRP materials reference library (MRL) binders, binders collected from around Michigan were mixed with hydrated lime and silica filler. The hydrated lime and silica used for creating mastics was the same for both the SHRP MRL binders and Michigan binders. Mixing of the fillers with binders was conducted in the same manner as outlined previously for the SHRP MRL mastics. Once mastics had been procured 25mm specimens were made with standard 25mm molds and allowed to rest for the required 10 minutes prior to testing. Specimen attachment and DSR zeroing was conducted in the same manner as was detailed earlier for AAA-1 and AAM-1 binder testing.

The samples tested with the ceramic disks were examined with the DSR twice. The first examination occurred with unconditioned samples. After the first test, the disk and binder

cylinder were placed in a water bath with 25°C distilled water for a period of 24 hours. After 24 hours of soaking, the specimens were retested as conditioned specimens. Both testing procedures were tested with the water bath and air chamber separately. Table 8.3 summarized the different testing conditions employed for each binder. As the table indicates, 28 different scenarios were conducted for each binder, yielding 588 scenarios for all 21 binders.

8.5.1 Materials for Field Binder Testing

The binders selected for analysis were collected from the field and encompassed a range of Performance Grades (PG). Three categories of PG high temperature were available for analysis: PG 58, 64, and 70. Binders were tested at the high temperature (e.g. 58°C or 64°C) with exception of the binders with a high temperature of 70, these were tested at 64°C. The discrepancy in test temperature for the PG 70-X binders was based on the knowledge that the PG 70-X was only used to allow for better rutting performance in the field where high traffic volumes were expected. Some of the binders contained polymers while others were neat.

Table 8.3 summarizes the number of tests conducted for each condition state and filler-binder combination.

Table 8.3 Samples Tested

		Water Bath			Air Chamber			
		Perforn	nance High	Grade	Performance High Grade			
		58	64	70	58	64	70	
Original	Unconditioned	18	27	18	18	27	18	
Binder	Saturated	18	27	18	18	27	18	
5% Hydrated	Unconditioned	18	27	18	18	27	18	
Lime	Saturated	18	27	18	18	27	18	
10%	Unconditioned	18	27	18	18	27	18	
Hydrated Lime	Saturated	18	27	18	18	27	18	
20% Hydrated	Unconditioned	18	27	18	18	27	18	
Lime	Saturated	18	27	18	18	27	18	
5%	Unconditioned	18	27	18	18	27	18	
Silica	Saturated	18	27	18	18	27	18	
10%	Unconditioned	18	27	18	18	27	18	
Silica	Saturated	18	27	18	18	27	18	
20%	Unconditioned	18	27	18	18	27	18	
Silica	Saturated	18	27	18	18	27	18	

8.4 Testing Plan for Each Michigan Binder

Binder	Environment	Mastic	Percentage of Mastic	Unconditioned	Conditioned
			5	XXX	XXX
		Lime	10	XXX	XXX
			20	XXX	XXX
	Water		5	XXX	XXX
		Silica	10	XXX	XXX
			20	XXX	XXX
1		None	0	XXX	XXX
1			5	XXX	XXX
		Lime	10	XXX	XXX
	Air		20	XXX	XXX
			5	XXX	XXX
		Silica	10	XXX	XXX
			20	XXX	XXX
		None	0	XXX	XXX

8.5.2 Statistical and Graphical Results of Michigan Binder Tests

Upon the conclusion of testing all 588 combinations, statistical analyses were conducted to determine statistically significant factors and moisture susceptible binders. All of the statistical analyses assumed a level of significance of 0.05.

8.5.3 Statistical and Graphical Comparisons of All Michigan Binders

The initial set of statistical analysis examined all of the data prior to categorizing the DSR test results by possible significant factors. Figure 8.17 displays the data collected from the modified DSR spindle and base plate configuration. It is difficult to distinguish a graphical trend using all of this data; thus indicating that there are no obvious trends that should be evaluated first. It is however apparent that the majority of complex modulus values are less than 10000 pascals. Several t-tests were employed to help ascertain important information. Figure 8.7 summarizes the t-tests calculated to obtain significant information.

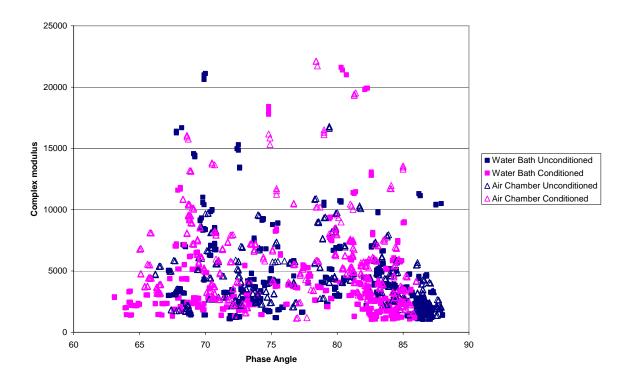


Figure 8.17 Graphical Comparison of Environmental Testing Conditions for All Data

8.6 Development of a Moisture Susceptibility Criteria

Twenty-one binders were collected from paving construction sites around the state of Michigan.

The binders collected varied in performance grade. Table 8.5 summarizes the binders tested. The testing procedure developed in the previous chapter was used to evaluate the moisture susceptibility of the field binders.

Table 8.5 Summary of Binders Tested

Site	PG High Temperature	PG Low Temperature	Polymer	Polymer Percent	Asphalt Source
Ann Arbor	70	-22	Cellulose Fibers	0.3	T & M Oil
Battle Creek	64	-28	None	-	Michigan Paving and Materials
Brighton	58	-22	None	-	Marathon Detroit
Clarkston	70	-22	Modifier	Unknown	Marathon Detroit
Detroit	70	-22	Modifier	Unknown	Marathon Detroit
Dundee 12.5mm NMAS	64	-28	None	-	MTM Oil
Dundee 19mm NMAS	64	-28	None	-	Marathon Detroit
Grand Rapids I-196	64	-22	None	-	Michigan Paving and Materials
Grand Rapids M-45	58	-28	Antistrip	0.3	T & M Oil
Hartland	64	-22	None	-	Marathon Detroit
Howell	70	-28	Modifier	Unknown	Michigan Paving and Materials
Levering	58	-28	None	-	British Petroleum
Michigan Ave 12.5mm NMAS	70	-22	Modifier	Unknown	Marathon Detroit
Michigan Ave 19mm NMAS	58	-28	None	-	Marathon Detroit
Michigan International Speedway	64	-28	None	-	Marathon Detroit
Owosso	64	-28	None	-	Michigan Paving and Materials
Pinckney	64	-22	None	-	Marathon Detroit
Saginaw	58	-28	None	-	Marathon Detroit
St. Johns	58	-22	None	-	Michigan Paving and Materials
Toledo	70	-22	Modifier	Unknown	6505 MPM Oil
Van Dyke	64	-22	None	-	Marathon Detroit

As previously mentioned, several moisture susceptibility tests exist for HMA pavements. For example, the modified Lottman test is often used to determine the moisture susceptibility of a mix. Unfortunately, attempts at establishing a moisture susceptible test for asphalt binders have been fairly ineffective. Previously a new test method to determine the moisture susceptibility of asphalt binders was presented using a DSR (Rottermand 2004, Kvasnak 2006). The proceeding sections outline a preliminary moisture susceptibility criterion for the newly developed moisture susceptibility test for asphalt binders.

8.6.1 Hypotheses

It was initially hypothesized that specimens tested in a water bath would yield differing asphalt binder measurements than those tested in the temperature controlled air chamber.

Conditioned specimens were predicted to generate different asphalt binder measurements than unconditioned specimens. Since differences in asphalt binder measurements were anticipated, it was decided that specimens would not be identified as moisture susceptible simply because of divergences in asphalt binder properties for water bath tested, temperature controlled air chamber

tested, unconditioned, or conditioned specimens. It was realized that a guideline for categorizing asphalt binders as either moisture susceptible or moisture resistant was needed that considered more than a difference between asphalt binder measurements. The following sections outline the development of a moisture susceptibility criterion for asphalt binders tested using a modified base plate and spindle in a DSR (Kvasnak 2006).

8.6.2 Asphalt Binder Criteria

When researchers established criteria for asphalt binder tests incorporated in the Superpave system a consensus of asphalt binder minimums was reached by an Expert Task Group. The minimum proposed by the Expert Task Group was verified by subsequent testing (Dongre, 2006). There was an initial inclination to only examine the change in the viscous component, but it was realized that the elastic component should be incorporated in the criteria system. The inclusion of both elastic and viscous components prompted the use of $G^*/\sin(\delta)$ in the Superpave criteria (Dongre 2006). The minimum criterion established for unaged binders is that $G^*/\sin(\delta)$ exceeds 1.0kPa.

The performance grade specification associated with the Superpave system was adapted for establishing a specification for surface treatments. Numerous Texas Department of Transportation (TxDOT) agencies completed surveys on distresses identified for surface treatments and rated the successfulness of certain surface treatments in the field. The information collected from the cooperating TxDOT was used in conjunction with laboratory tests to altar the performance grade system established in Superpave (Barcena et al. 2002). Unfortunately, there is no available field data for the materials researched for this study. However, the goal was to base a criterion on mechanistic properties.

8.6.3 Application of Superpave Asphalt Binder Criterion

The initial inclination was to determine if moisture was detrimental enough to change the performance grade of an asphalt binder. Since all of the binders tested with the modified DSR parts were unaged, the criterion that the $G^*/\sin(\delta)$ exceed 1.0kPa was applied to all binders tested. Original binders, hydrated lime treated binders, and silica treated binders all passed the minimum criterion that the $G^*/\sin(\delta)$ surpass 1.0kPa. It was noted however, that several of the filler treated binders were close to not meeting the minimum criterion.

Since the Superpave criterion for unaged binders did not identify moisture susceptible binders, another criterion was sought. It was concluded that a criterion similar to the Superpave system should be utilized. Thus, subsequent methods were employed to establish a new minimum criterion for binders established with the modified DSR parts. Visual observations had indicated which asphalt binders were severely affected by moisture, but this only indicated that the Superpave criterion was not a satisfactory measure and a new guideline needed to be established (Kvasnak 2006).

8.6.4 Viscous and Elastic Component Analysis

The final method used in conjunction with the previously mentioned methods in establishing a criterion for asphalt binders tested with modified DSR parts was an analysis of the change in viscous and elastic components of asphalt binders based on the different testing conditions.

The initial analysis only considered original binders. For each binder the viscous and elastic components were computed for unconditioned air chamber, unconditioned water bath, conditioned air chamber, and conditioned air chamber specimens. Viscous and elastic components were computed by using G^* and δ data. The relationship between the viscous

component, elastic component and G* can be illustrated as a right triangle. Figure 8.18 illustrates the relationships with reference to the complex shear modulus. Knowing this relationship allowed for basic geometry and trigonometry to be used to calculate the viscous and elastic components.

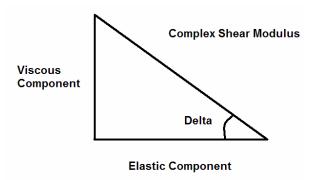


Figure 8.18 Complex Shear Modulus

The main difference considered was a contrast between conditioned water bath and unconditioned air chamber specimens. Differences were divided by an unconditioned air chamber sample to yield a percent change. Figure 8.19 illustrates the dispersion of the percent change of the viscous to elastic components for the comparison of unconditioned air chamber specimens to conditioned water bath specimens. Based on the dispersion, a four category ranking system was developed. Each section of a graph was labeled quandrant I, II, III, or IV. Quadrant I is the upper right hand corner where both the elastic and viscous components are positive. Quadrant II is the upper left corner. Quadrant III is the lower left corner. Quadrant IV is the lower right corner.

Binders in quadrant I were given a rank of 1, implying the most favorable asphalt binders since both the elastic and viscous properties increased with conditioning. Binders in quadrant II were ranked 2, these binder demonstrated a loss in the viscous component, but an improvement

in elasticity. Quadrant III binders were given the rank of 3, these binders exhibited a loss in both viscous and elastic properties. The level 3 binders were deemed the least favorable, fortunately only two original binders fell into this category. There were no data points in quadrant IV, loss in elastic component and gain in viscous component. The grey dashed lines represent one standard deviation above and below the normalized mean. The grey dotted line is the standard deviation limits for normalized viscous differences. The grey dashed and dotted line represents the standard deviation limits for normalized elastic differences. The standard deviations for normalized viscous and elastic components were calculated by pooling all of the data together.

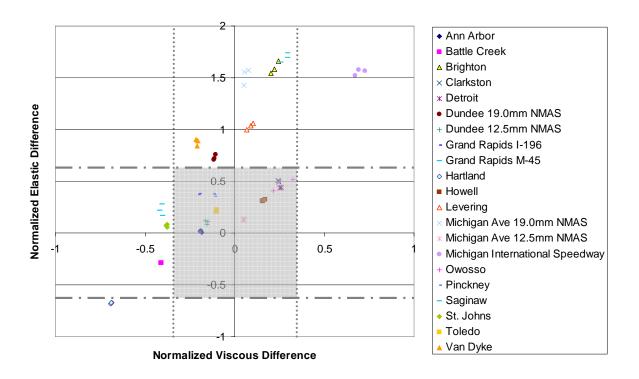


Figure 8.19 Comparison of Elastic and Viscous Percent Changes for Original Binders

Table 8.6 summarizes the binders which exist within one standard deviation, outside one standard deviation, and marginally within one standard deviation. Examining binders within one standard deviation allowed for the identification of binders which yielded drastic changes in elastic and viscous components. The marginal binders are binders that were either located on top

of a standard deviation line or relatively close to one. From Table 8.6, it can be seen that about half of the binders responded quite differently than the other half. After examining the wide range in normalized elastic and viscous component differences it was concluded that additional analysis was required to understand these differences.

Table 8.6 Normalized Viscous and Component of Original Binders Standard Deviation Analysis Summary

Within 1 Standard Deviation	Marginal Binders	Outside 1 Standard Deviation
Ann Arbor	Clarkston	Brighton
Battle Creek	Dundee 19.0mm NMAS	Detroit
Dundee 12.5mm NMAS	Howell	Michigan Ave 19.0mm NMAS
Grand Rapids I-196	Levering	Michigan Ave 12.5mm NMA
Grand Rapids M-45	Owosso	Saginaw
Hartland		VanDyke
Michigan International Speedway		
Pinckney		
Saginaw		
St. Johns		
Toledo		

An additional method of evaluating the normalized difference was employed to account for statistical noise associated with the data collected. Confidence ellipsoids were defined at a level of 95% for the normalized elastic and viscous component differences of each original binder. If the confidence ellipsoid existed completely in quadrant I and II, that binder would be considered not significantly affected by moisture. If the ellipsoid was in quadrant III, viscous and elastic components both decreased in value, then the binder was considered prone to moisture affects (Kvasnak 2006).

8.6.5 I-94 Ann Arbor

Figure 8.20 illustrates the relationship between the normalized differences for the elastic and viscous components. The confidence ellipsoid for I-94 Ann Arbor spans quadrants II and III. Since the ellipsoid overlaps into quadrant III, the binder collected from Ann Arbor is

considered possibly prone to moisture susceptibility. The correlation between the elastic and viscous components is negative but strong, with a value of -0.8889. Figure 8.21 displays the dispersion of the elastic and viscous components by filler. The normalized component values increase drastically with increasing hydrated lime levels.

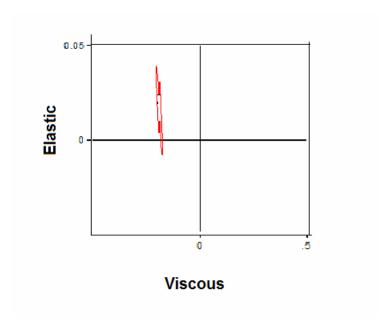


Figure 8.20 Ann Arbor Confidence Ellipsoid

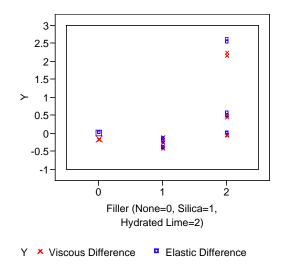


Figure 8.21 Plot of Normalized Elastic and Viscous Differences

8.6.6 M-66 Battle Creek

The confidence ellipsoid for the viscous and elastic components of the Battle Creek binder were extremely small since the changes in elastic and viscous components with conditioning were small. Figure 8.22 illustrates the confidence ellipsoid obtained for the normalized differences of elastic and viscous components for Battle Creek. The correlation between the differences in elastic and viscous components was -0.9779. Figure 8.23 illustrates the range in normalized difference measurements. The original binder normalized differences are close fitting with little dispersion. Binder specimens with hydrated lime display the greatest dispersion, however hydrated lime modified binders are the only specimens which should show improvement with conditioning.

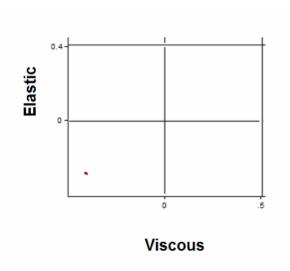


Figure 8.22 Confidence Ellipsoid for Battle Creek Original Binder

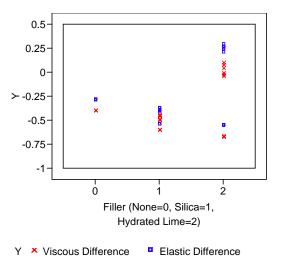


Figure 8.23 Plot of Normalized Viscous and Elastic Differences for Battle Creek

8.6.7 M-59 Brighton

The normalized elastic and viscous component differences are graphed along with a confidence ellipsoid in Figure 8.24. The figure showed that there is no overlap into an adjacent quadrant at a confidence level of 95%. The correlation between the normalized viscous and elastic differences is 0.9892. The range of values for the calculated normalized viscous and elastic component differences are displayed in Figure 8.25. The elastic component for original binders improves significantly, as can be seen in Figure 5.7.

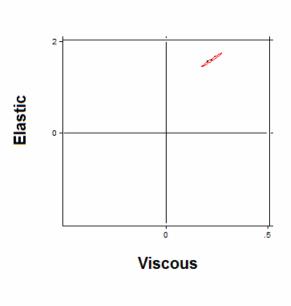


Figure 8.24 Confidence Ellipsoid of Normalized Elastic and Viscous Differences of Brighton Original Binder

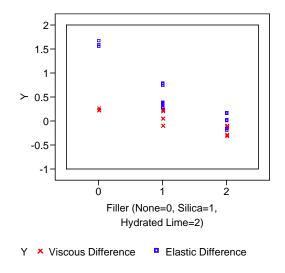


Figure 8.25 Plot of Viscous and Elastic Component Normalized Differences for Brighton

8.6.8 I-75 Clarkston

The differences in the elastic and viscous components were rather precise, thus resulting in rather small confidence ellipsoids. The confidence ellipsoids for viscous and elastic

differences of original binder obtained from Clarkston can be seen in Figure 8.26. From the figure, it can be seen that the region of 95% confidence limit is rather small, but all contained within quadrant I. Despite the small confidence ellipsoid, the data clearly falls within quadrant I therefore it is not deemed a binder prone to moisture damage. The correlation between the two normalized component differences is -0.9826. Figure 8.27 displays the diverse values for the normalized components.

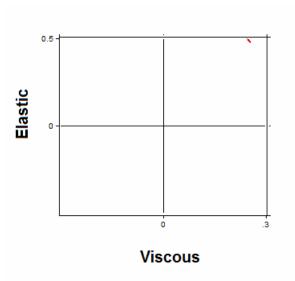


Figure 8.26 Confidence Ellipsoid for Elastic and Viscous Component Differences of Clarkston Original Binder

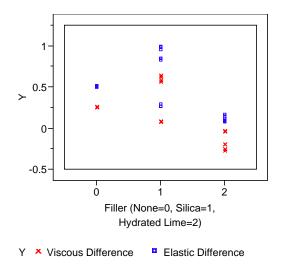


Figure 8.27 Plot of Normalized Elastic and Viscous Component Differences for Clarkston

8.6.9 M-53 Detroit

The confidence ellipsoids based on the normalized elastic and viscous component differences are illustrated in Figure 8.28. The confidence ellipsoid is clearly in quadrant I, thus implying that it is not a binder prone to moisture damage. The correlation between the normalized elastic and viscous component differences is 0.1286. The range of differences for original binder, binder with silica, and binder with hydrated lime is shown in Figure 8.29. It would appear that the addition of filler actually has a negative effect on this binder's ability to resist moisture absorption. This would indicate that the addition of hydrated lime does not always aid in improving a binder's resistance to moisture damage. In other words, the practice of adding hydrated lime to any binder to improve the moisture resistance should be reevaluated.

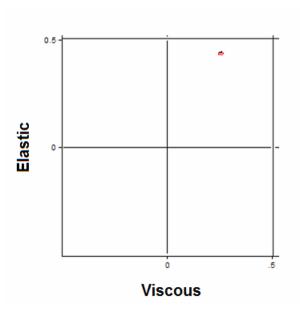


Figure 8.28 Confidence Ellipsoid of Normalized Elastic and Viscous Differences of Original Binder from Detroit

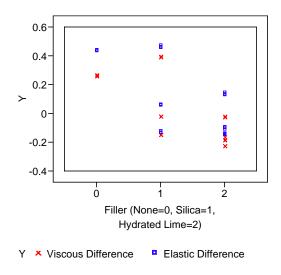


Figure 8.29 Plot of Normalized Elastic and Viscous Component Differences for Detroit Binder

8.6.10 M-50Dundee 19.0mm NMAS

The confidence ellipsoid for Dundee 19.0mm NMAS original binder is completely in quadrant II as can be seen in Figure 8.30. The correlation between the normalized elastic and

viscous component differences is 0.9739. The dispersion in the normalized differences for original binder, binder with silica, and binder with hydrated lime specimens can be seen in Figure 8.31. The improvement in the elastic and viscous components occurred with the higher percentages of filler in the binder.

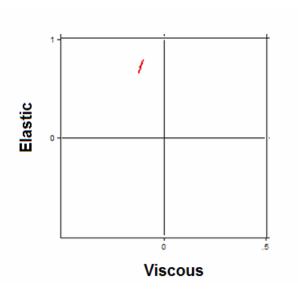


Figure 8.30 Confidence Ellipsoid for Original Binder Dundee 19.0mm NMAS

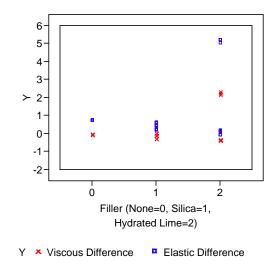


Figure 8.31 Plot of Normalized Elastic and Viscous Component Differences for Dundee 19.0mm NMAS Binder

8.6.11 M-50Dundee 125mm NMAS

The confidence ellipsoid of normalized elastic and viscous component differences of Dundee 12.5mm NMAS original binder exist completely in quadrant II, which can be seen in Figure 8.32. Existence in quadrant II implies that the elastic component is increasing while the viscous component is decreasing with moisture conditioning. The correlation between the two normalized component differences is -0.2617. The range of values for normalized difference is displayed in Figure 8.33. Silica has the most negative effect on the normalized elastic and viscous components, which can be seen in Figure 5.16.

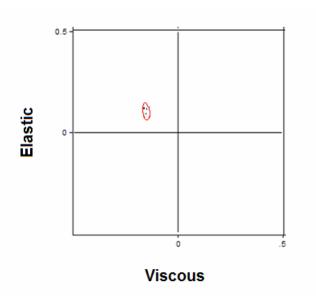


Figure 8.32 Confidence Ellipsoid of Dundee 12.5mm NMAS Original Binder

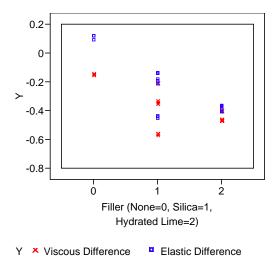


Figure 8.33 Plot of Normalized Elastic and Viscous Component Differences for Dundee 12.5mm NMAS Binder

8.6.12 Grand Rapids I-196

Grand Rapids I-196 original binder exists completely in quadrant II, as can be seen in Figure 8.34. The correlation between the normalized elastic and viscous component differences is 1, thus implying that the component differences are strongly related. Figure 8.35 illustrates the dispersion associated with normalized differences for binder from Grand Rapids I-196. As can be seen, the binder improves the most with the increased levels of hydrated lime.

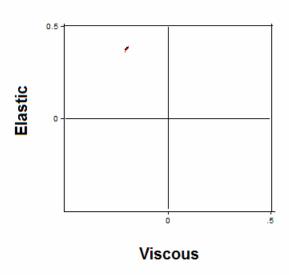


Figure 8.34 Confidence Ellipsoid of Grand Rapids I-196 Original Binder

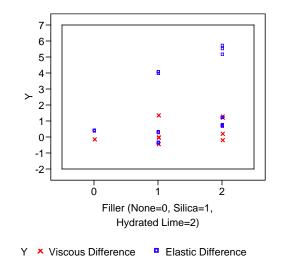


Figure 8.35 Plot of Normalized Elastic and Viscous Component Differences for Grand Rapids I-196 Binder

8.6.13 Grand Rapids M-45

Quadrant II surrounds the confidence ellipsoid for the Grand Rapids M-45 original binder normalized elastic and viscous component differences. The confidence ellipsoid is displayed in

Figure 8.36. The correlation between the normalized elastic and viscous component differences is -0.0938. Figure 8.37 illustrates the range of values of the normalized differences. The greatest improvements come with the addition of silica, followed closely by hydrated lime.

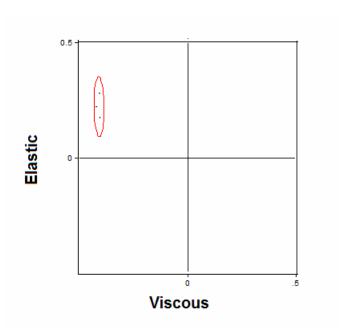


Figure 8.36 Confidence Ellipsoid for Grand Rapids M-45 Original Binder



Figure 8.37 Plot of Normalized Elastic and Viscous Component Differences for Grand Rapids M-45 Original Binder

8.6.14 US-23 Hartland

The Hartland confidence ellipsoid based on normalized elastic and viscous component differences exists only in quadrant III. Figure 8.38 illustrates the confidence ellipsoids location in quadrant III. The correlation between the normalized elastic and viscous component differences is 0.7904. Normalized elastic and viscous component differences for the Hartland binder are displayed in Figure 8.39.

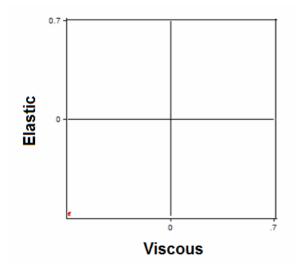


Figure 8.38 Confidence Ellipsoid for Hartland Original Binder

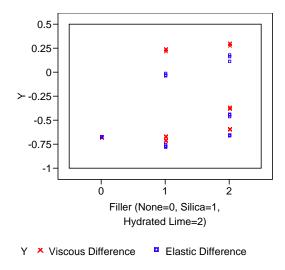


Figure 8.39 Plot of Normalized Elastic and Viscous Component Differences for Hartland Binder

8.6.15 BL I-96 Howell

Figure 8.40 illustrates the placement of the confidence ellipsoid for Howell original binder in quadrant I. The correlation between the normalized elastic and viscous component differences is 0.6988. Figure 8.41 illustrates the range of differences for the normalized elastic and viscous components of Howell binder specimens. The binder performs well without filler. The addition of silica and hydrated lime actually deteriorate the binders resistance to moisture.

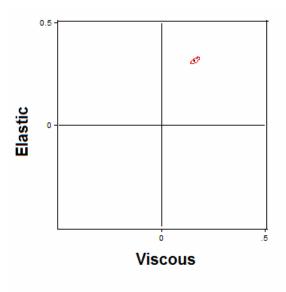


Figure 8.40 Confidence Ellipsoid for Howell Original Binder

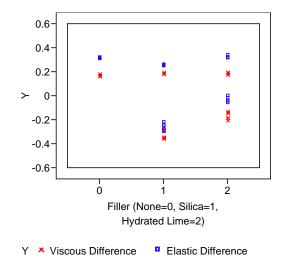


Figure 8.41 Plot of Normalized Elastic and Viscous Component Differences for Howell Binder

8.6.16 I-75 Levering Road

The confidence ellipsoid for the Levering original binder is located in quadrant I, as can be seen in Figure 8.42. The correlation between the normalized elastic and viscous component differences is 1, implying that there is an extremely strong relationship between the normalized

differences. Figure 8.43 displays the range of values obtained for the normalized elastic and viscous component differences.

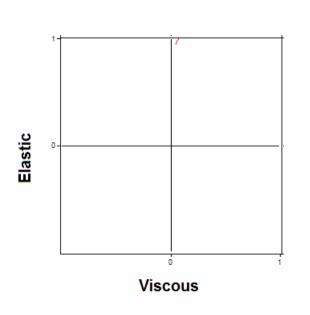


Figure 8.42 Confidence Ellipsoid for Levering Original Binder

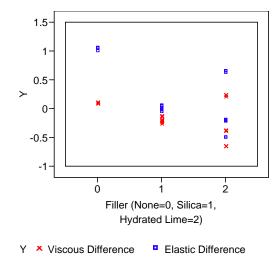


Figure 8.43 Plot of Normalized Elastic and Viscous Component Differences for Levering Binder

8.6.17 Michigan Ave 19.0mm NMAS

Figure 8.44 illustrates the placement of the confidence ellipsoid of the normalized elastic and viscous component differences for Michigan Ave. 19.0mm NMAS original binder. The correlation between the two component differences is 0.6684. The range of normalized component differences can be seen in Figure 8.45.

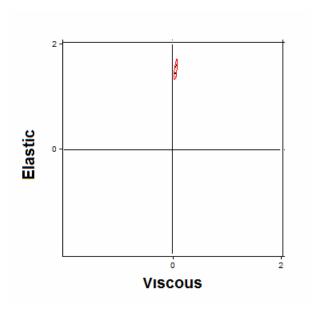


Figure 8.44 Confidence Ellipsoid for Michigan Ave 19.0mm NMAS Original Binder

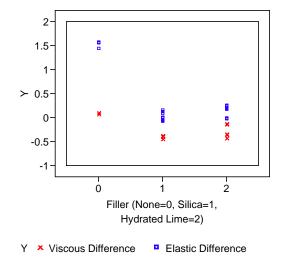


Figure 8.45 Plot of Normalized Elastic and Viscous Component Differences for Michigan Ave 19.0mm NMAS Binder

8.6.18 Michigan Ave 12.5mm NMAS

The confidence ellipsoid for the normalized elastic and viscous component differences lies completely in quadrant I, as shown in Figure 8.46. This indicates that this binder is not prone to moisture damage. The correlation between the two normalized components is -0.8426. From Figure 8.47, it can be seen that the improvement of the binder with either filler for resisting moisture effects is minimal if at all.

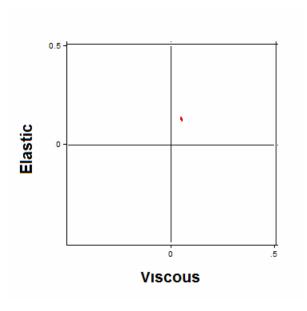


Figure 8.46 Confidence Ellipsoid for Michigan Avenue 12.5mm NMAS Original Binder

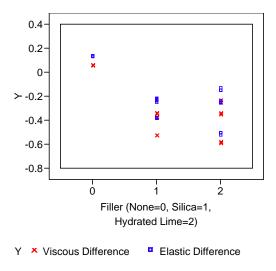


Figure 8.47 Overlay Plot of Normalized Elastic and Viscous Component Differences for Michigan Avenue 12.5mm NMAS Binder

8.6.19 Michigan International Speedway US-12

Quadrant I completely encompasses the confidence ellipsoid of the normalized elastic and viscous component differences for the original binder from Michigan International Speedway. An ellipse completely encompassed by quadrant I imples that the binder is not prone to moisture damage. The correlation between the two normalized component differences is 0.6614. The range of values obtained for the differences can be seen in Figure 8.49. The addition of filler hinders the binder's ability to resist moisture damage.

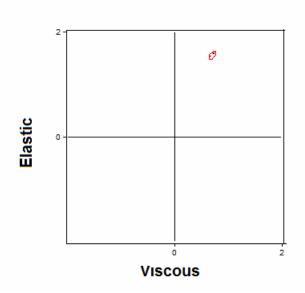


Figure 8.48 Confidence Ellipsoid for Michigan International Speedway US-12 Original Binder

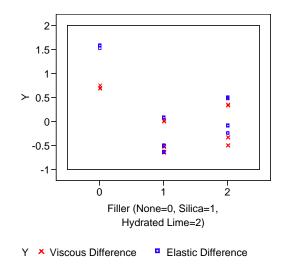


Figure 8.49 Overlay Plot of Normalized Elastic and Viscous Component Differences for Michigan International Speedway US-12 Binder

8.6.20 M-21 Owosso

binder from Owosso exists completely in quadrant I, seen in Figure 8.50. The correlation between the two normalized components is 0.8680. The range of values obtained when finding

the difference between normalized components can be seen in Figure 8.51. As the amount of filler was added to the binder, the moisture resistance increased.

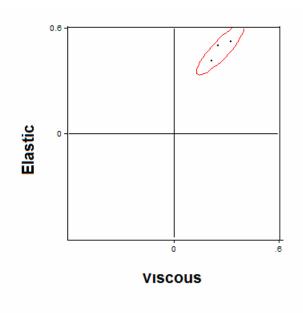


Figure 8.50 Confidence Ellipsoid for Owosso Original Binder

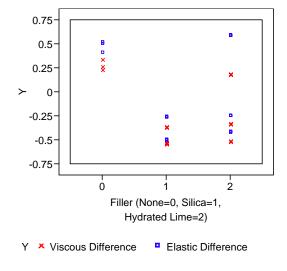


Figure 8.51 Overlay Plot of Normalized Elastic and Viscous Component Differences for Owosso Binder

8.6.21 M-36 Pinckney

The confidence ellipsoid for the normalized elastic and viscous component differences lies completely in quadrant II, see Figure 8.52, indicating that the elastic component increased and the viscous component decreased. The correlation between the two normalized differences is -0.8513. The range in difference values obtained can be seen in Figure 8.53. The addition of silica improves the moisture resistance and performance of the binder.

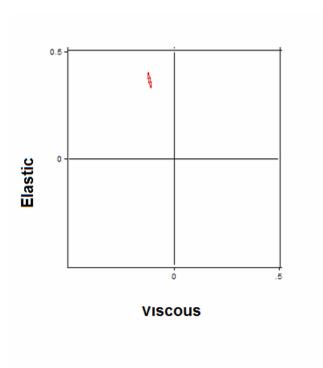


Figure 8.52 Confidence Ellipsoid for Pinckney Original Binder

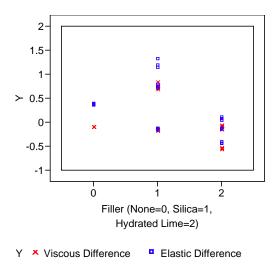


Figure 8.53 Overlay Plot of Normalized Elastic and Viscous Component Differences for Pinckney Binder

8.6.22 M-84 Saginaw

The confidence ellipsoid for the Saginaw original binder exists completely in quadrant I, as seen in Figure 8.54. Since the data falls in quadrant I, the binder is deemed moisture damage resistant. The correlation between the normalized elastic and viscous component differences is 0.8530. The range of normalized difference values can be observed in Figure 8.55. The binder performs best without fillers.

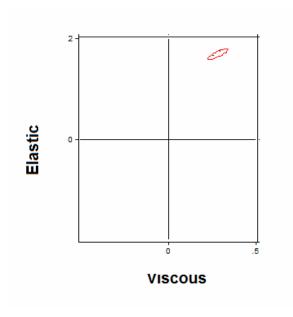


Figure 8.54 Confidence Ellipsoid for Saginaw Original Binder

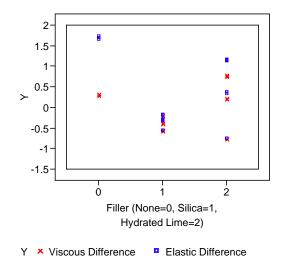


Figure 8.55 Overlay Plot of Normalized Elastic and Viscous Component Differences for Saginaw Binder

8.6.23 M-21 St. Johns

Figure 8.56 illustrates that the confidence ellipsoid for St. Johns of the normalized elastic and viscous component differences lies completely in quadrant II. The correlation between the two normalized component differences is -0.4764. The range of difference values can be seen in Figure 8.57. The binder performs best with hydrate lime followed by silica.

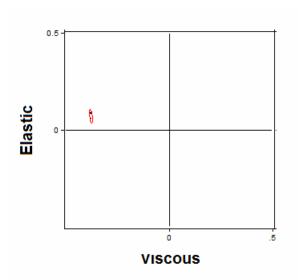


Figure 8.56 Confidence Ellipsoid of St. Johns Original Binder

Figure 8.57 Overlay Plot of Normalized Elastic and Viscous Component Differences for St. Johns Binder

8.6.24 I-75 Toledo

Figure 8.58 displays the confidence ellipsoid of the normalized elastic and viscous component differences in quadrant II. The correlation between the two component differences is

0.3777. The range of difference values can be seen in Figure 8.59. The binder performs best with the addition of hydrated lime followed closely by the original binder.

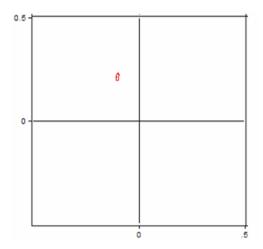


Figure 8.58 Confidence Ellipsoid for Toledo Original Binder

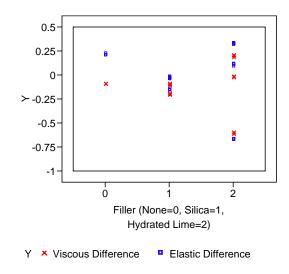


Figure 8.59 Overlay Plot of Normalized Elastic and Viscous Component Differences for Toledo Binder

8.6.25 Van Dyke, Detroit

Figure 8.60 illustrates the placement of the confidence ellipsoid in quadrant II. The correlation between the normalized elastic and viscous component differences is -0.1733. The

range of difference values for original binder and binder with filler can be seen in Figure 8.61. The binder performs best with higher levels of hydrated lime.

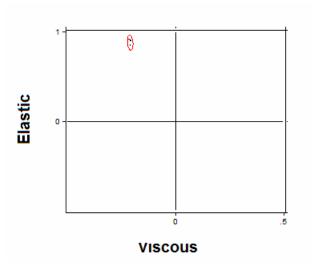


Figure 8.60 Confidence Ellipsoid of Van Dyke Original Binder

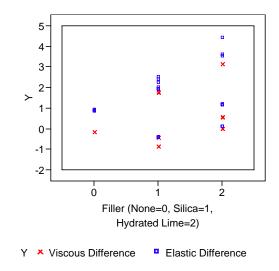


Figure 8.61 Overlay Plot of Normalized Elastic and Viscous Component Differences for Van Dyke Binder

8.6.26 Summary of Statistical Noise

Confidence ellipsoids were employed to evaluate the noise associated with the data obtained from the DSR testing. Evaluating whether or not all of the recorded data and confidence region lies completely encompassed in one quadrant aided in defining the moisture

susceptibility of a binder. Confidence ellipsoids account for the confidence regions of both the elastic and viscous normalized component differences. The confidence ellipsoids are based on a confidence level of 95%. Table 8.7 summarizes the locations of the various confidence ellipsoids. The only binder that spanned multiple quadrants was Ann Arbor. The binders completely contained in quadrant I improved in both elastic and viscous properties, thus indicating that moisture does not have a damaging effect on these binders. Binders completely in quadrant II exhibited increasing values for the elastic component, but decreasing values for the viscous component. These binders are slightly effected by moisture, but since the elastic component increased the affect is not considered significant. An increased elastic component indicated that a binder recovers better after a load application than prior to an elastic component increase. Binders in quadrant III were considered prone to moisture damage since both the elastic and viscous components decreased. Confidence ellipsoids of binders with filler can be found in Appendix B (Kvasnak 2006).

Table 8.7 Location of Confidence Ellipsoids

Quadrant I	Quadrant II	Quadrant III
Brighton, Clarkston, Detroit, Howell, Levering, Michigan Avenue 19.0mm NMAS, Michigan Avenue 12.5mm NMAS, Michigan International Speedway, Owosso, Saginaw	Ann Arbor, Dundee 19.0mm NMAS, Dundee 12.5mm NMAS, Grand Rapids I-196, Grand Rapids M-45, Pinckney, St. Johns, Toledo, VanDyke	Ann Arbor, Battle Creek, Hartland

8.6.27 Summary of Correlation of Normalized Component Differences

Normalized elastic and viscous components were computed to evaluate the affect of moisture on these components. The correlation of the difference between normalized components was computed to determine if the changes caused by moisture on each component was related. For negative and positive correlations, absolute values between 0 and 0.5 were

considered low, while values between 0.5 and 0.75 were deemed moderate, and all above 0.75 labeled as high. Table 8.8 summarizes the results of categorizing the correlations. Most of the binders have a strong (labeled as high) relationship, the difference is whether or not it is positive or negative. Strong relationships between the normalized components were considered auspicious. If the two components change with respect to one another as a result of moisture exposure, defining a relationship of how moisture affects binders will be much easier than if there was no relationship between the two normalized components (Kvasnak 2006).

Table 8.8 Correlation Ratings of Normalized Viscous and Elastic Component Differences

	Low	Moderate	High
Positive	Detroit, Dundee 12.5mm NMAS, Toledo	Howell, Michigan Ave 19.0mm NMAS	Brighton, Dundee
			19.0mm NMAS,
			Grand Rapids I-
			196, Hartland,
			Levering,
			Michigan
			International
			Speedway,
			Owosso, Saginaw
Negative G	Grand Rapids M-45, St. Johns, VanDyke		Ann Arbor, Battle
			Creek, Clarkston,
			Michigan Ave
			12.5mm NMAS,
			Pinckney

8.7 Recommended Moisture Susceptibility Criterion

This test criterion is based on data obtainable from DSR testing software and water absorption. As previously mentioned, this criterion is based on theory and has been applied to laboratory results, but still needs to be verified with field results. It is recommended that binders are tested with a DSR using a modified spindle and base plate. The binder that should be tested is original binder and binder with a filler. A binder with filler should be tested to allow for breaks in an asphalt binder specimen membrane surface, which enables water to permeate a

specimen faster than a specimen without surface breaks. Surface breaks occur in pavements; therefore inducing breaks by adding a filler simulates, to an extent, reality.

Both of the original binder and binder with filler should be tested as unsaturated and saturated. The saturation should occur for a minimum of 24 hours in a 25°C water bath. An evaluation of the change in viscous and elastic components should be conducted, as outlined in this chapter. Confidence ellipsoids should be developed to account for noise associated with data readings. The rating used in this chapter should be followed.

In conjunction with DSR testing results, specimens should be evaluated to determine water absorbing tendencies, following steps outlined in this chapter. If a binder exhibits an confidence ellipsoid that is close to crossing over into another quadrant, the water absorption test results should be consulted. This method should be validated with field data once the pavements where the material was collected from have aged properly.

8.8 Analysis of Results – AASHTO T283

Two statistical procedures were used to analyze the data. First, two sample t-tests were used to compare dry strength to wet strength and dry dynamic modulus to wet dynamic modulus at each frequency using the following hypotheses:

```
H_o: Dry Strength = Wet Strength
H_A: Dry Strength \neq Wet Strength
\alpha = 0.05
H_o: Dry E * = Wet E *
H_A: Dry E * \neq Wet E *
```

 $\alpha = 0.05$

A probabilistic analysis was used to determine the criterion for moisture susceptibility for HMA based on the dynamic modulus test using moisture conditioning outlined in AASHTO T283. The lognormal distribution based on the Kolmogorov-Smirnov One-Sample Test using a

p-value of 0.05 was selected for the TSR and E* ratios since a lognormal distribution was applicable to most of the datasets investigated. A lognormal distribution is an appropriate selection since the TSR cannot be less than zero. Therefore a lognormal distribution was used to fit the TSR and E* ratio data at each frequency. The outputs containing the lognormal distribution and the appropriate test statistics can be seen in Appendix C and summarized below in Table 8.9.

Table 8.9 Goodness of Fit Statistics for Phase II

Test	Frequency	Kolmogorov-Smirnov Statistic	n volue
Parameter	(Hz)	Lognormal Distribution	p-value
TSR	N/A	0.08659458	0.051
E* Ratio	0.02	0.06143057	>0.150
E* Ratio	0.1	0.08809599	>0.150
E* Ratio	1.0	0.14446214	< 0.010
E* Ratio	5.0	0.10132484	0.113
E* Ratio	10.0	0.11101509	0.057
E* Ratio	25.0	0.07586343	>0.150

Table 8.10 shows the results of the two-sample t-tests comparing dry strength to wet strength. The t-tests show that for certain projects, there are significant statistical differences in strength. The bolded projects in Table 8.10 are those that are statistically different and have a TSR value less than the threshold value of 80%. Thus, the average TSR for each project is shown in Table 8.10, to understand if the t-test results are positive in that the TSR is greater than the criterion or negative if it is less than the criterion. The t-test shows mixed results, in some cases the strengths are statistically different and the TSRs are less than the criterion or close to it, while there are a few cases where the strengths are statistically different and the TSRs are greater than the criterion.

Table 8.10 Two-Sample t-test Results Comparing Dry Strength to Wet Strength

	AASHTO T283	
Project	t-Test Results	Average TSR (%)
M-50 Dundee 3E1	Not Statistically Different	89.7
M-36 Pinckney	Statistically Different	75.1
M-45 Grand Rapids	Statistically Different	78.7
M-21 St. Johns	Not Statistically Different	107.3
M-84 Saginaw	Statistically Different	85.1
BL I-96 Howell	Not Statistically Different	102.1
M-21 Owosso	Not Statistically Different	90.2
M-66 Battle Creek	Statistically Different	90.1
M-50 Dundee 4E3	Not Statistically Different	97.6
US-12 MIS	Statistically Different	80.9
M-59 Brighton	Not Statistically Different	87.3
Michigan Ave. Dearborn 3E10	Not Statistically Different	96.0
Vandyke Detroit	Not Statistically Different	100.7
US-23 Hartland	Not Statistically Different	95.1
I-75 Levering Road	Statistically Different	91.1
I-196 Grand Rapids	Statistically Different	83.8
I-75 Clarkston	Not Statistically Different	92.7
M-53 Detroit 8 Mile	Not Statistically Different	95.6
Michigan Ave. Dearborn 4E10	Statistically Different	93.7
I-75 Toledo	Not Statistically Different	101.5
I-94 Ann Arbor SMA	Not Statistically Different	96.6

Figure 8.62 shows the TSR data pooled together and a lognormal distribution fitted to the data. A vertical line is drawn at 80%, which is the TSR criterion and a horizontal line across to show how many specimens did not meet the criterion. Approximately 15% of the specimens failed to meet the TSR criterion of 80%.

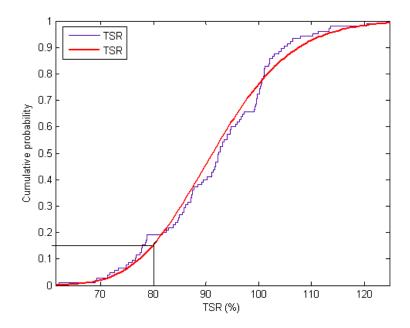


Figure 8.62 Lognormal Distribution of TSRs

8.9 Analysis of Results – E* Ratio

Table 8.11 shows the results of the two-sample t-tests comparing dry dynamic modulus to moisture conditioned dynamic modulus. The t-tests show that for certain projects, there are significant statistical differences in dynamic modulus. Thus, the average E* ratio for each project is shown in Table 8.11, to understand if the t-test results are propitious, E* ratio is greater than the criterion, or negative, E* less than the criterion. The t-test shows mixed results, in some cases dynamic modulus values are statistically different and the E* ratios are less than the criterion while there are cases where the results are statistically the same and the E* ratio is less than the criterion. The criterion used is 80% which is the same as TSR but this value will be examined later in this chapter.

Table 8.11 Two-Sample t-test Results Comparing Control E* to Moisture Conditioned E*

	0.02 Hz		0.1 Hz		1 Hz	
Project	t-test Results	E* Ratio	t-test Results	E* Ratio	t-test Results	E* Ratio
M-50 Dundee 3E1	Not Statistically Different	109.1	Not Statistically Different	109.8	Not Statistically Different	108.0
M-36 Pinckney	Statistically Different	55.2	Statistically Different	49.2	Statistically Different	44.6
M-45 Grand Rapids	Not Statistically Different	64.4	Statistically Different	57.5	Statistically Different	44.5
M-21 St. Johns	Not Statistically Different	103.8	Not Statistically Different	92.5	Not Statistically Different	80.0
M-84 Saginaw	Not Statistically Different	80.6	Not Statistically Different	75.6	Statistically Different	62.3
BL I-96 Howell	Not Statistically Different	110.9	Not Statistically Different	102.6	Not Statistically Different	86.9
M-21 Owosso	Not Statistically Different	102.0	Not Statistically Different	89.8	Not Statistically Different	87.8
M-66 Battle Creek	Not Statistically Different	83.7	Not Statistically Different	78.2	Not Statistically Different	76.7
M-50 Dundee 4E3	Not Statistically Different	75.7	Not Statistically Different	72.5	Not Statistically Different	73.2
US-12 MIS	Not Statistically Different	84.9	Not Statistically Different	73.8	Statistically Different	71.1
M-59 Brighton	Not Statistically Different	95.9	Not Statistically Different	82.0	Not Statistically Different	95.1
Michigan Ave. Dearborn 3E10	Not Statistically Different	65.0	Not Statistically Different	55.7	Statistically Different	49.2
Vandyke Detroit	Not Statistically Different	103.6	Not Statistically Different	95.9	Not Statistically Different	100.7
US-23 Hartland	Not Statistically Different	85.4	Not Statistically Different	88.9	Not Statistically Different	87.5
I-75 Levering Road	Not Statistically Different	67.3	Statistically Different	63.4	Statistically Different	59.7
I-196 Grand Rapids	Not Statistically Different	87.7	Statistically Different	76.8	Not Statistically Different	83.4
I-75 Clarkston	Not Statistically Different	105.3	Not Statistically Different	97.6	Not Statistically Different	99.0
M-53 Detroit 8 Mile	Not Statistically Different	101.5	Not Statistically Different	93.6	Not Statistically Different	103.8
Michigan Ave. Dearborn 4E10	Statistically Different	55.5	Not Statistically Different	53.7	Not Statistically Different	48.3
I-75 Toledo	Not Statistically Different	81.4	Not Statistically Different	92.5	Not Statistically Different	94.8
I-94 Ann Arbor SMA	Not Statistically Different	95.9	Not Statistically Different	76.0	Not Statistically Different	77.1

	5 Hz		10 Hz		25 Hz	
Project	t-test Results	E* Ratio	t-test Results	E* Ratio	t-test Results	E* Ratio
M-50 Dundee 3E1	Not Statistically Different	107.1	Not Statistically Different	109.7	Not Statistically Different	106.8
M-36 Pinckney	Statistically Different	52.3	Not Statistically Different	59.1	Not Statistically Different	96.8
M-45 Grand Rapids	Statistically Different	46.2	Statistically Different	47.5	Not Statistically Different	66.2
M-21 St. Johns	Not Statistically Different	82.3	Not Statistically Different	76.7	Not Statistically Different	68.4
M-84 Saginaw	Statistically Different	57.0	Statistically Different	58.8	Not Statistically Different	70.8
BL I-96 Howell	Not Statistically Different	89.4	Not Statistically Different	83.6	Not Statistically Different	77.8
M-21 Owosso	Not Statistically Different	90.0	Not Statistically Different	94.4	Not Statistically Different	94.3
M-66 Battle Creek	Not Statistically Different	77.1	Not Statistically Different	75.1	Not Statistically Different	71.4
M-50 Dundee 4E3	Statistically Different	75.4	Statistically Different	81.1	Not Statistically Different	95.5
US-12 MIS	Statistically Different	77.2	Not Statistically Different	82.7	Not Statistically Different	88.8
M-59 Brighton	Not Statistically Different	110.0	Not Statistically Different	108.1	Not Statistically Different	104.5
Michigan Ave. Dearborn 3E10	Not Statistically Different	55.3	Not Statistically Different	61.9	Not Statistically Different	78.3
Vandyke Detroit	Not Statistically Different	102.2	Not Statistically Different	102.5	Not Statistically Different	120.8
US-23 Hartland	Not Statistically Different	90.7	Not Statistically Different	92.4	Not Statistically Different	94.8
I-75 Levering Road	Statistically Different	55.8	Statistically Different	52.7	Statistically Different	52.9
I-196 Grand Rapids	Not Statistically Different	103.4	Not Statistically Different	106.9	Not Statistically Different	146.4
I-75 Clarkston	Not Statistically Different	114.0	Not Statistically Different	120.3	Not Statistically Different	157.3
M-53 Detroit 8 Mile	Not Statistically Different	107.5	Not Statistically Different	107.5	Not Statistically Different	103.8
Michigan Ave. Dearborn 4E10	Not Statistically Different	47.0	Not Statistically Different	47.0	Not Statistically Different	53.3
I-75 Toledo	Not Statistically Different	92.0	Not Statistically Different	93.2	Not Statistically Different	89.8
I-94 Ann Arbor SMA	Not Statistically Different	81.9	Not Statistically Different	87.0	Not Statistically Different	87.3

Figures 9.18 through 9.23 shows the E* ratio data pooled for each frequency and a lognormal distribution fitted to the data. A horizontal line is drawn at a cumulative probability of 0.15 and a vertical line drawn where the horizontal line intersects the fitted distribution. This cumulative probability value was selected because 15% of the TSR specimens failed the 80% criteria. By drawing the lines at a cumulative probability of 0.15 and drawing vertical lines where the horizontal line intersects the distribution function the E* ratio at 0.02, 0.1, 1.0, 5.0,

10.0 and 25.0 Hz are approximately 60%, 60%, 57%, 58%, 58%, and 58%, respectively. This results in a E* ratio criterion of 60% for each frequency.

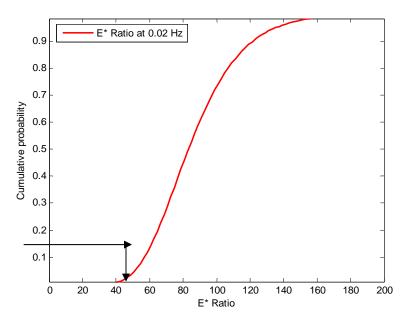


Figure 8.63 Lognormal Distribution of E* Ratios at 0.02 Hz

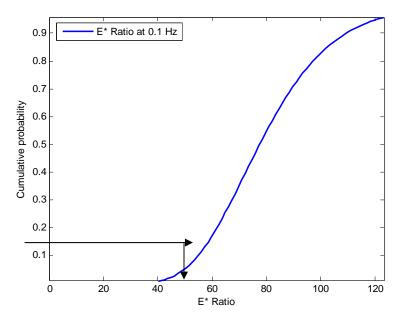


Figure 8.64 Lognormal Distribution of E* Ratios at 0.1 Hz

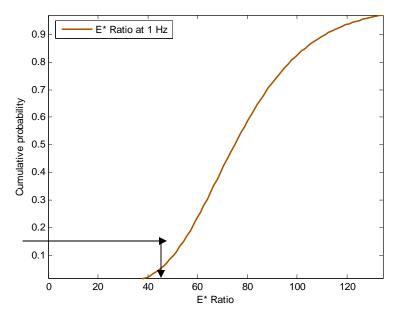


Figure 8.65 Lognormal Distribution of E* Ratios at 1.0 Hz

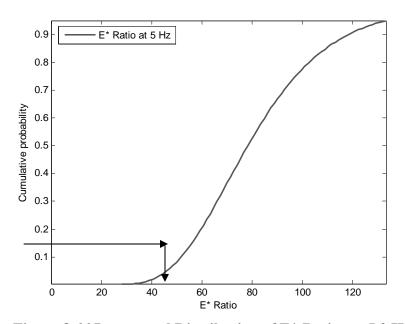


Figure 8.66 Lognormal Distribution of E* Ratios at 5.0 Hz

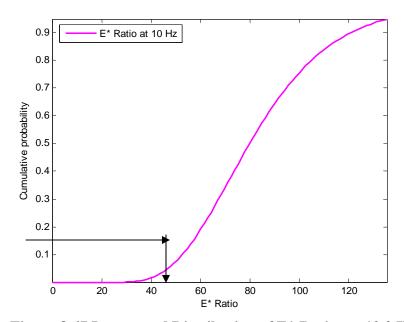


Figure 8.67 Lognormal Distribution of E* Ratios at 10.0 Hz

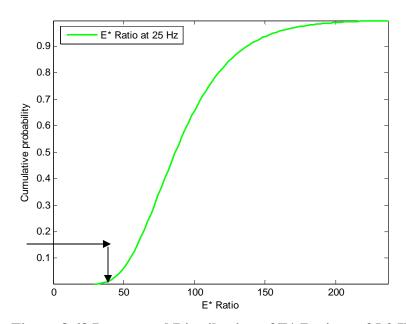


Figure 8.68 Lognormal Distribution of E* Ratios at 25.0 Hz

Table 8.12 provides a summary of both test procedure by ranking the mixtures for each project based AASHTO T283 TSR and the proposed moisture susceptibility test using E* ratio. The ranking is based on a scale from one to twenty-one where one is most moisture susceptible and twenty-one is least moisture susceptible. Both test procedures rank the first two mixtures

about the same otherwise the two methods diverge considerably in their ranking of the mixtures. The proposed method does produce lower retained strength ratios and this is due to the dynamic loading of a specimen which produces hydraulic loading in a specimen thus reducing the strength of the HMA mixture. There is a tendency for the proposed test procedure to identify additional mixes that are moisture susceptible than AASHTO T283.

Table 8.12 Ranking of Projects Based on TSR and E* Ratio

Project	T283	0.02 Hz	0.1 Hz	1.0 Hz	5.0 Hz	10.0 Hz	25.0 Hz
M-36 Pinckney	1	1	1	2	3	4	14
M-45 Grand Rapids	2	2	3	1	1	1	3
US-12 MIS	3	7	6	7	9	11	11
I-196 Grand Rapids	4	12	10	12	17	18	20
M-84 Saginaw	5	8	9	6	6	5	7
M-59 Brighton	6	13	12	17	20	17	16
M-50 Dundee 3E1	7	19	21	21	19	20	18
M-66 Battle Creek	8	11	11	9	7	7	6
M-21 Owosso	9	16	14	15	14	15	13
I-75 Levering Road	10	5	5	5	5	3	1
I-75 Clarkston	11	20	19	19	21	21	21
Michigan Ave. Dearborn 4E10	12	4	4	4	2	2	2
US-23 Hartland	13	10	13	14	13	13	12
M-53 Detroit 8 Mile	14	15	17	20	18	19	17
Michigan Ave. Dearborn 3E10	15	3	2	3	4	6	8
I-94 Ann Arbor SMA	16	14	8	10	11	12	9
M-50 Dundee 4E3	17	6	7	8	8	10	15
Vandyke Detroit	18	17	18	18	16	16	19
I-75 Toledo	19	9	16	16	15	14	10
BL I-96 Howell	20	21	20	13	12	9	5
M-21 St. Johns	21	18	15	11	10	8	4

8.10 Moisture Susceptibility Testing with the Asphalt Pavement Analyzer

The APA has been used for years to rank the rutting potential of HMA mixes. Several studies have concluded that the APA adequately ranks the rutting susceptibility of an HMA mix. One objective of this report was to determine if the APA could be used to rank not only the rutting potential of a mix, but also the moisture susceptibility of a mix. The Hamburg wheel

tracker has been used to rank the moisture susceptibility of mixes in various studies. One study concluded that the APA and Hamburg do an adequate job of ranking (West et al. 2004), while another concluded that the two were too severe (Cooley et al. 2000).

8.10.1 APA Sensitivity Study

Two mixes were used to establish testing conditions for moisture susceptibility evaluation using the APA. The two mixes selected were based on TSR results from the Phase I testing. One of the mixes was deemed moisture resistant while the other was considered to be moisture susceptible based on a TSR criterion of 80% retained tensile strength.

Four condition states were considered for moisture susceptibility evaluation. The first condition state consisted of unconditioned specimens tested in air. The second condition state encompassed unconditioned specimens tested in water. A third condition state consisted of moisture saturated specimens that had endured one freeze/thaw cycle prior to testing in air. The final condition considered moisture saturated specimens that had undergone one freeze/thaw cycle prior to testing in water.

An ANOVA (α =0.05) was conducted to determine if the different condition states yielded statistically different mean rut depths. The ANOVA indicated that no statistical differences existed between the four condition states when comparing mean rut depths. Since a statistical difference in mean rut depths was not detected, it was concluded that not all four condition states would be required for testing the remaining 19 field mixes. The condition state selected for the study were a control state (unconditioned specimens tested in air), and two condition states of moisture saturated specimens that had endured one freeze/thaw cycle with one set tested in air and another in water (Kvasnak 2006).

8.10.2 APA Testing of Field Sampled HMA

As mentioned, 21 HMA mixes were collected from the field. Two of the 21 mixes were evaluated during the sensitivity study to determine the testing conditions to be considered when examining the moisture damage of HMA with the APA. The 19 HMA mixes not evaluated during the sensitivity study were tested under three condition states. Previously mentioned in the last subsection, the three condition states considered were:

- 1. Unconditioned tested in air (control set/condition state 1),
- 2. Moisture saturated and one freeze/thaw cycle tested in air (condition state 2), and
- 3. Moisture saturated and one freeze/thaw cycle tested in water (condition state 3).

8.10.3 Conditioning of the HMA Specimens for APA Testing

All specimens were cut to the appropriate height (75mm) for circular specimens using a circular saw. New geometries of the specimens were recorded after sawing along with new bulk specific gravity measurements using the saturated surface dry method. Specimens were grouped in sets of three based on bulk specific gravity measurements.

Control specimens were preheated at the high performance grade for a minimum time of 6 hours in accordance with the APA testing guidelines. After preheating, a pneumatic tube and steel wheel were lowered over the central axis of each specimen and an APA was set to run 8,000 cycles. As mentioned previously, a cycle is equivalent to a wheel passing one time forward and back to its starting position over the test specimen. Once the inner chamber of the APA reheated to the appropriate testing temperature a test was initiated. The reheating usually took less than 2 minutes, since the chamber was heated to the appropriate test temperature prior to the placement of specimens. The reheating was necessary since there was some heat loss upon the opening of the APA doors to install the specimens locked inside the molds. After a

completion of 8,000 cycles, test data was automatically transferred to a spreadsheet file and saved for future analysis. Saturation occurred via vacuum saturation.

Specimens in either the condition state 2 or 3 were prepared in the same manner, except the specimens which were moisture saturated and endured one freeze/thaw cycle prior to testing. These specimens were moisture saturated to a maximum of 80% air voids filled with water. Specimens were wrapped in Glad Press n' Seal[®] with ends of the wrap taped down with packing tape. Wrapped specimens and 10mL of water were placed inside a plastic freezer bag labeled with mix information, specimen number, and condition state group. Specimens inside the freezer bags were then placed in a freezer for a period of 24 hours. To minimize the amount of heat entering the freezer, all specimens in a particular group were prepared first and then placed into the freezer at the same time instead of individually. After 24 hours, specimens were placed in a 60°C water bath to thaw. Once thawing was complete, specimens were preheated to the appropriate APA testing temperature for the 6 hour minimum time. Specimens tested in air were placed in an air chamber for preheating, while those to be tested in water were placed in a water bath for preheating. After the allotted 6 hours of preheating, specimens were placed in an APA for testing. Specimens tested in air were placed in an APA and a steel wheel lowered on top of a pneumatic tube and the APA chamber was allowed to re-establish the test temperature prior to the initiation of 8,000 cycles. Specimens tested in water were placed in an APA chamber and the doors sealed shut. Once the APA doors were shut, a metal box elevated to surround the APA molds. Once the metal box had reached its highest point, water heated to the appropriate temperature flowed into the chamber to fill the metal box. The heated water at all times kept specimens completely immersed. Once the metal box was filled and the water and test chamber re-established the appropriate test temperature, 8,000 cycles commenced. Data from both

condition states 2 and 3 were automatically transferred to a spreadsheet file to be saved and analyzed later.

8.10.4 APA Test Results for Field Sampled HMA

ANOVA tables were employed to evaluate data collected from APA testing. A significance level of 0.05 was used for evaluating the ANOVA tables. Data from each mix was analyzed along with all of the data combined using an ANOVA.

8.10.5 Analysis of All APA Data

Analysis of data combined indicated that the significant factors affecting rut depths were condition state, PG high temperature, NMAS, and aggregate passing the #4, #8, #50, #100 sieves. Mean comparisons of the main effects were conducted using the Tukey method to determine whether or not means of different groups are statistically equivalent (α =0.05). Tables 7.1 through 7.6 outline the results of the mean comparisons. Effect levels considered statistically equivalent share the same group letter. Two group letters appear if an effect level is statistically similar to more than one group.

Table 8.13summarizes comparisons of mean rut depths grouped by condition state.

Condition states 1 (unconditioned) and 3 are considered statistically equivalent. Condition state 2 differed from the rut depth means of the two other groups. The average rut depth for condition state 2 specimens was about 6mm while condition states 1 and 3 were 8.5mm and 9.5mm, respectively. It would appear that condition state 2 specimens performed better than condition state 1 and 3. It is hypothesized that the specimens stiffened during the combined freeze/thaw cycle and preheating for APA testing which resulted in the condition state 2 specimens

performing better. Condition state 1 was only preheated and condition state 3 was preheated in a water bath not an air chamber (Kvasnak 2006).

Table 8.13 Mean Comparison by Condition State

Condition	Group
Unconditioned Tested in Air	Α
Conditioned, One Freeze-Thaw Tested in Air	В
Conditioned, One Freeze-Thaw Tested in Water	Α

Table 8.14 compared average rut depths of specimens grouped by PG high temperature. Mixes with PG 58 and PG 64 binders were found statistically equivalent and PG 70 mixes differed. The rut depth for PG 70 mixes was 1.3mm and 3.4mm less than PG 64 and PG 58 mixes, respectively. It is hypothesized that the PG 70 mixes performed better since these mixes were tested at 64°C instead of at 70°C. It should be remembered that mixes with PG 70 binders were used in lieu of PG 64 binders to realize better performance for certain mixes; therefore, these mixes were tested at 64°C to observe the improved performance if any (Kvasnak 2006).

Table 8.14 Mean Comparison by PG High Temperature

PG High	Group	
Temperature	Cioup	
PG 58	Α	
PG 64	Α	
PG 70	В	

Table 8.15 summarizes the results of a rut depth mean comparison between specimens tested at 64°C and 58°C. The specimens tested at 64°C performed better than the ones tested at 58°C. It is hypothesized that the 64°C specimens performed better since the PG 70 binders were included in this group (Kvasnak 2006).

Table 8.15 Mean Comparisons by Test Temperature

Test Temperature	Group	
58°C	Α	
64°C	В	

Table 8.16 summarizes a rut depth mean comparison grouping the specimens by NMAS. 19.0mm NMAS and 12.5mm NMAS were deemed statistically equivalent. 12.5mm NMAS and 9.5 mm NMAS were found to be statistically equivalent. 19.0mm NMAS and 9.5 mm NMAS differed statistically. Specimens having a 9.5 mm NMAS yielded the lowest rut depth while 19.0MM NMAS specimens yielded the deepest ruts (Kvasnak 2006).

Table 8.16 Mean Comparisons by NMAS

NMAS	Group
19.0mm	Α
12.5mm	АВ
9.5mm	В

Table 8.17 summarizes rut depth mean comparisons grouped by equivalent single axle load (ESAL) level. ESAL levels 3 (3 million ESALs) and 10 (10 million ESALs) were deemed statistically equivalent and 10 million ESALs and 30 million ESALs were also found to be statistically equivalent. Mixes made for 30 million ESALs performed the best and 1 million ESAL specimens performed the worst (Kvasnak 2006).

Table 8.17 Mean Comparisons by ESAL Level

ESAL	Group		
1	Α		
3	В		
10	ВС		
30	С		

Table 8.18 summarizes a rut depth mean comparison by gradation. The mean rut depths for the two gradations were considered statistically similar.

Table 8.18 Mean Comparisons by Gradation

Gradation	Group
Fine	В
Coarse	В

Table 8.19 summarizes the results of the rut depth mean comparisons conducted on the APA Data. It can be seen that many of the mixes yielded statistically equivalent rut depths for the different combinations of testing environment and specimen conditioning (Kvasnak 2006).

Table 8.19 Summary of Rut Depth Mean Comparison

	Condition State			
Mix	1	2	3	
Ann Arbor	Α	Α	Α	
Battle Creek	Α	В	Α	
Brighton	Α	Α	Α	
Clarkston	Α	Α	Α	
Detroit	Α	В	Α	
Dundee 19.0mm				
NMAS	Α	В	ВС	
Dundee 12.5mm				
NMAS	Α	Α	Α	
Grand Rapids I-196	Α	Α	Α	
Grand Rapids M-45	Α	Α	Α	
Hartland	Α	Α	Α	
Howell	Α	В	ВС	
Levering	Α	Α	Α	
Michigan Ave				
19.0mm NMAS	Α	Α	Α	
Michigan Ave				
12.5mm NMAS	Α	В	В	
Michigan				
International				
Speedway US-12	Α	Α	Α	
Owosso	Α	Α	В	
Pinckney	Α	Α	Α	
Saginaw	Α	Α	Α	
St. Johns	Α	Α	Α	
Toledo	Α	Α	В	
Van Dyke	Α	Α	В	

8.10.6 General Linear Model Analysis of APA Data

General linear models (GLMs), ANOVA and stepwise regression, were used to evaluate the significance of several factors affecting the rut depth of a specimen. The first set of analyses evaluated all of the data without grouping by a factor. Table 8.20 summarizes the conclusions gleaned from the ANOVA. Dots in a cell indicate that a factor is deemed significant based on a level of significance of 0.05. The sum of squares associated with each factor was evaluated. Sum of squares relate how the variability of a factor affects a model. Type I sum of squares calculates a factor's effect with regards to the preceding factors have already been entered into a model. Factor order is not an issue for Type III sum of squares, which account for a factor's variation assuming that all factors have been entered into a model. According to the Type I sum of squares, the factors with a significant affect on rut depth are site, condition, high PG temperature, test temperature, material obtained on a 9.5mm sieve, and binder content. Type III sum of squares only identifies one factor as significantly affecting rut depth, test temperature and material retained on a 9.5mm sieve. From this analysis, it can be seen that conservatively speaking, test temperature and material retained on a 9.5mm sieve are significant factors. Closer examination indicates that overall, specimens tested at 64°C exhibited lower rut depths, especially those with a high PG temperature of 70°C (Kvasnak 2006).

Table 8.20 Summary of ANOVA for All of the APA data

	Type I Sum	Type III Sum
Factor	of Squares	of Squares
	Significance	Significance
Site	•	
Condition	•	•
High PG Temp	•	
Test Temperature		
25mm		
19mm		
12.5mm		
9.5mm	•	
4.75mm	•	
2.36mm	•	
1.18mm		
0.60mm		
0.30mm	•	
0.15mm		
0.075mm		
Binder Modification		
RAP		
Binder Content		
Fines/Binder	•	
NMAS	•	
ESAL		
Gradation		
Angularity		

Regression analysis was employed to evaluate the nature of the relationship of a factor and a model. Stepwise selection was used to develop a model. Table 8.21 summarizes the results of the regression analysis based on stepwise selection. The model selected consisted of six factors. The R², which quantitatively describes how well rut depth is predicted by a model, was 0.9982. Another statistical tool used to evaluate the regression model selected via stepwise selection was Mallow's Cp. Mallow's Cp is a statistical tool used to select an appropriate model. A propitious model will have a Cp value close to the number of variables in the model plus 1. Mallow's Cp is calculated as follows:

$$Cp = \frac{SSE}{MSE} - N + 2 \bullet p$$
where:

Equation 8.1

SSE= Residual sum of squares,

MSE= Mean sum of squares,

N= Number of observations, and

p=Number of factors +1.

Mallow's Cp for the selected regression model was 10.0917. The best value for this model would have been 7 since there are six factors; however a value of 10 is not a sign of a poorly fit model. The parameter estimates are the coefficients associated with each factor. A large parameter estimate indicates that a relationship is strong. The measure of significance is related in the column labeled Pr > F.

Table 8.21 Regression Parameter Estimated for All APA Data

Factor	Parameter Estimate	Pr > F
Intercept	775.15666	<0.0001
Site	0.32019	0.0001
Condition	0.52751	0.0287
High PG Temp	1.5151	0.0462
Test Temperature	-2.17985	0.0093
25mm		
19mm	-7.33037	<0.0001
12.5mm	1.67161	<0.0001
9.5mm	-1.31011	<0.0001
4.75mm		
2.36mm		
1.18mm		
0.60mm	0.38679	<0.0001
0.30mm		
0.15mm	-1.27069	0.0006
0.075mm		
Binder Modification	-5.42499	0.0134
RAP		
Binder Content		
Fines/Binder		
NMAS	4.70714	0.0005
ESAL		
Gradation		
Angularity	-1.36009	<0.0001

The next set of ANOVA and regression analyses grouped the data by condition state. The first condition state explored was the condition state 1 (the control set). The first GLM analysis evaluated was the ANOVA table for condition state 1. Table 8.22 summarizes the results of the ANOVA for condition state rut depth data. As with the previous ANOVA table analysis, information about Type I and Type III sum of squares is provided. The level of significance was α =0.05. The dots in the table indicate that a factor is significant. Nine factors were considered significant for Type I sum of squares, however no factors were considered significant for Type III sum of squares. The factors deemed significant by Type I sum of squares

included site, high PG temperature, several sieve sizes, and the fines to binder ratio (Kvasnak 2006).

Table 8.22 Summary of ANOVA for Condition State 1 APA Data

	Type I Sum	Type III Sum
Factor	of Squares	of Squares
	Significance	Significance
Site	•	
Condition		
High PG Temp	•	
Test Temperature		
25mm		
19mm	•	
12.5mm		
9.5mm	•	
4.75mm	•	
2.36mm	•	
1.18mm		
0.60mm		
0.30mm	•	
0.15mm	•	
0.075mm		
Binder Modification		
RAP		
Binder Content		
Fines/Binder	•	
NMAS		
ESAL		
Gradation		
Angularity		

The second set of analysis conducted for condition state 1 was regression analysis to evaluate the nature of the factor relationships. Table 8.23 summarizes the results of the regression analysis for condition state 1 APA rut depth data. The R² for the condition state 1 regression model was 0.7797 and Mallow's Cp was 22.5524. The model would be considered good based on the R² and Mallow's Cp. An excellent model would have yielded a higher R² and lower Mallow's Cp. Outside of the intercept, the fines to binder ratio has the largest parameter

estimate indicating that the rut depth of the control specimens is strongly related to the fines to binder ratio (Kvasnak 2006).

Table 8.23 Regression Parameter Estimates for Condition State 1 APA Rut Depth Data

Factor	Parameter	Pr > F
1 dotor	Estimate	1171
Intercept	369.62144	0.009
Site	-0.15442	0.0005
Condition		
High PG Temp		
Test Temperature	-0.2361	0.0226
25mm		
19mm	-3.29513	0.0031
12.5mm		
9.5mm		
4.75mm	-0.4561	<0.0001
2.36mm		
1.18mm		
0.60mm		
0.30mm	0.32202	0.0600
0.15mm	1.7956	0.0036
0.075mm		
Binder Modification		
RAP	0.12625	0.0756
Binder Content		
Fines/Binder	-15.43404	<0.0001
NMAS	4.04996	<0.0001
ESAL		
Gradation	-8.39689	<0.0001
Angularity		

After evaluating the data from condition state 1, condition state 2 was evaluated (moisture saturation plus one freeze/thaw cycle tested in air). Table 8.24 summarizes the ANOVA results of condition state 2 rut depth data obtained from APA testing. Nine factors were deemed significant based on Type I sum of squares. The factors deemed statistically significant for condition state 2 are not the same as the factors deemed statistically significant for condition state 1 ruts. Both condition state ruts were affected by site, high PG temperature, and the fines to binder ratio. However, condition state 2 ruts were also affected by binder

modification. There were also several differences in which sieve sizes affected the ruts (Kvasnak 2006).

Table 8.24 Summary of ANOVA for Condition State 2 APA Rut Depth Data

	Type I Sum	Type III Sum
Factor	of Squares	of Squares
	Significance	Significance
Site	•	
Condition		
High PG Temp	•	
Test Temperature		
25mm		
19mm	•	
12.5mm	•	
9.5mm		
4.75mm		
2.36mm	•	
1.18mm		
0.60mm	•	
0.30mm		
0.15mm	•	
0.075mm		
Binder Modification	•	
RAP		
Binder Content		
Fines/Binder	•	
NMAS		
ESAL		
Gradation		
Angularity		

Regression analysis was conducted after evaluating the ANOVA table for condition state

2. Table 8.25 summarizes the parameter estimates for condition state 2 rut depth data.

Disregarding the intercept, gradation exhibits the largest parameter estimate, indicating that gradation (fine or coarse) is strongly related to rut depths of condition state 2 specimens (Kvasnak 2006).

Table 8.25 Regression Parameter Estimates for Condition State 2 APA Rut Depth Data

Factor	Parameter Estimate	Pr > F
Intercept	354.05987	<0.0001
Site	0.11773	0.0314
Condition		
High PG Temp	-0.14946	0.0127
Test Temperature		
25mm		
19mm	-3.00001	<0.0001
12.5mm		
9.5mm		
4.75mm	-0.38694	<0.0001
2.36mm	0.59923	0.0003
1.18mm		
0.60mm		
0.30mm		
0.15mm		
0.075mm	-0.78474	0.0220
Binder Modification		
RAP		
Binder Content		
Fines/Binder		
NMAS		
ESAL		
Gradation	6.65655	0.0017
Angularity	-0.92217	<0.0001

The final condition state to be evaluated was condition state 3 (moisture saturation plus one freeze/thaw cycle tested in water). Table 8.26 summarizes the ANOVA conclusions for condition state 3 rut depth data. Evaluation of condition state 3 ANOVA indicates that six factors were deemed statistically significant for Type I sum of squares. Like condition states 1 and 2, condition state 3 Type I sum of squares indicated that high PG temperature and fines to binder ratio are significant factors. No factors were deemed statistically equivalent for Type III sum of squares (Kvasnak 2006).

Table 8.26 Summary of ANOVA for Condition State 3 APA Rut Depth Data

Type I Sum	Type III Sum
_	of Squares
Significance	Significance
•	
•	
•	
•	
•	
•	
	of Squares Significance

Once the ANOVA evaluation was completed, regression analysis was used to evaluate the nature of the relationships of the factors affecting condition state 3 rut depths. Table 8.27 displays the parameter estimates for the regression model selected based on condition state 3 rut depth data. Disregarding the intercept, the 19mm sieve yields the largest parameter estimate. Interestingly, in the stepwise regression model selected, the fines to binder ratio is marginally significant (Kvasnak 2006).

Table 8.27 Regresion Parameter Estimates for Condition State 3 APA Rut Depth Data

Factor	Parameter Estimate	Pr > F
Intercept	680.98121	<0.0001
Site		
Condition		
High PG Temp		
Test Temperature	-0.29178	0.0679
25mm		
19mm	-6.26604	<0.0001
12.5mm		
9.5mm		
4.75mm	-0.75907	<0.0001
2.36mm	0.58732	0.0042
1.18mm		
0.60mm	0.28329	0.1102
0.30mm		
0.15mm		
0.075mm		
Binder Modification		
RAP		
Binder Content	-4.32343	0.0034
Fines/Binder	-5.57584	0.0538
NMAS	4.98947	<0.0001
ESAL		
Gradation		
Angularity		

Evaluation of the data grouped by condition state offered some useful insight. According to the ANOVAs, there are several factors that consistently affect the rut depth of APA tested specimens. Those factors are high PG temperature, fines to binder ratio, and the sieve sizes 19mm and 0.15mm. The regression analysis differed between the three condition states. The factor exhibiting the largest parameter estimate was not consistent for all three condition states. This indicates that not only does testing environment, but also condition may be affecting the final rut depth created by an APA. Further inspection of the high PG temperature groupings revealed that the PG 70-X binders performed the best, smallest rut depths. The mixes with a PG 70-X binders were tested at 64°C and performed better than the other mixes. Most likely these

mixes performed better since the binders were less fluid during testing. Binders that tend to be fluid easily move with the application of a load. Aggregates can also move when the binders are moving during this fluid state. Shifting of material in a specimen in the presence of water can allow for breaks in a binder membrane thus enabling the penetration of moisture. Once moisture penetrates a binder it tends to soften a binder making it less resistant to moisture damage (Kvasnak 2006).

8.10.7 APA Analysis Summary

The analysis conducted on rut depth obtained from APA testing was outlined in the above sections summarizing ANOVA table results and mean comparison results. Interestingly for the majority of comparisons where there were differences between the condition effect levels, the unconditioned and condition state 3 specimens were usually deemed statistically equivalent while condition state 2 was deemed statistically different from both. However, only 8 mixes were affected statistically different by the condition state. The majority of mixes yielded statistically equivalent rut depths for all three condition states. A second observation that is intriguing is that there is no statistical difference between the rut depths of coarse-graded and fine-graded mixes (Kvasnak 2006).

8.10.8 APA Moisture Criteria

A moisture criterion for APA testing was developed based on ratio of the rut depths. The ratio consisted of condition state 3 divided by condition state 1. Any value less than 1 ± 0.05 was considered not prone to moisture damage. Values greater than 1 ± 0.05 were deemed moisture damage prone. The assumption for this criterion is that as mix ages it becomes stiffer therefore the specimens that endured longer heating times are aged more than the unconditioned

specimens. Condition state 2 and 3 specimens therefore should be stiffer than condition state 1 specimens. Stiffer binders are less prone to rutting. The ratio of condition state 2 to condition state 1 should also be determined to see if the freeze/thaw cycle has an affect on rut depth results. Table 8.28 summarizes the results of applying the two criteria. It appears that the majority of mixes fail both the freeze/thaw and moisture criteria. This is possible, however, these results should be compared to field cores to better refine both criteria. It is suspected that the criterion is on the conservative side (Kvasnak 2006).

Table 8.28 Summarized Results of Field Mixes Based on Freeze/thaw and Moisture Criteria

	Moisture Damage Prone	Moisture Damage Resistant
Freeze-Thaw	Grand Rapids M-45,	MIS US12,
Damage Prone	Hartland	Pinckney
Freeze-Thaw Damage Resistant	Battle Creek, Detroit, Dundee 19.0mm NMAS, Dundee 12.5mm NMAS, Howell, Levering, Michigan Ave 19.0mm NMAS, Owosso, Saginaw, St. Johns, Toledo, Vandyke	Ann Arbor, Michigan Ave 4, Brighton

Rutting results at WesTrack were compared to APA results (Epps Martin and Park, 2003). In the study, a rut of 12.5mm was considered dangerous and used as a failure marker. Tests with the APA of the same mixes yielded ruts of 9.1mm on average. The rut depth of 9.1mm created by the APA was then deemed the failure point for the mixes. Until field data can be acquired to relate APA results to Michigan mixes, a value of 9.1mm should be used as the failure criteria. The 9.1mm criteria was used to improve the criterion based on the ratio of the conditioned water tested specimens divided by the control specimens. Several specimen groups yielded high ratios which would be deemed moisture prone, however the rut depths were very small. Setting a failure rut depth and then calculating the ratio alleviates the issue of specimens

with small rut depths being labeled as moisture prone. Table 8.29 summarizes which conditions groups within a mix failed the rut depth criterion of 9.1mm. It can be seen that most of the specimens from condition state 2 (moisture saturation plus one freeze/thaw tested in air) specimens did not fail the rut depth criterion. Seven of the control groups failed and nine of the condition state 3 groups failed.

A further analysis was conducted to determine if these failure groups failed due to moisture damage or if the mix is merely susceptible to rutting. For this analysis, the ratio method of dividing water tested conditioned specimen rut depth values by control specimen rut depth values was implemented. If the ratio is greater than 1 the mix is considered moisture prone; whereas if the ratio is less than one it is not considered moisture prone. Table 8.30 summarizes the rut depth ratios of the mixes that failed the maximum rut depth criterion of 9.1mm. All of the mixes actually yielded lower rut depths for conditioned specimens tested in water except for the two mixes from Grand Rapids.

Table 8.29 Summary of Rut Depth Failure for all Three Condition States

Site	Control	Saturated and Freeze/Thaw Tested in Air	Saturated and Freeze/Thaw Tested in Water
Ann Arbor	Pass	Pass	Pass
Battle Creek	Fail	Pass	Fail
Brighton	Pass	Pass	Pass
Clarkston	Pass	Pass	Pass
Detroit	Pass	Pass	Pass
Dundee 19.0mm NMAS	Fail	Pass	Fail
Dundee 12.5mm NMAS	Pass	Pass	Pass
Grand Rapids I-196	Fail	Fail	Fail
Grand Rapids M-45	Fail	Fail	Fail
Hartland	Pass	Pass	Pass
Howell	Fail	Pass	Fail
Levering	Fail	Fail	Fail
Michigan Ave 19.0mm NMAS	Pass	Pass	Fail
Michigan Ave 12.5mm NMAS	Pass	Pass	Pass
Michigan International Speedway	Pass	Pass	Pass
Owosso	Fail	Pass	Pass
Pinckney	Pass	Pass	Pass
Saginaw	Pass	Pass	Pass
St. Johns	Pass	Pass	Fail
Toledo	Pass	Pass	Pass
Van Dyke	Pass	Pass	Fail

Table 8.30 Rut Depth Ratios of Mixes that Failed the Rut Depth Maximum Criterion

Site	Ratio of Conditioned Specimens Tested in Water by Control Specimens
Battle Creek	0.42
Dundee 19.0mm NMAS	0.62
Grand Rapids I-196	1.05
Grand Rapids M-45	1.07
Howell	0.66
Levering	0.84
Michigan Ave 19.0mm NMAS	0.90
St. Johns	0.76
Van Dyke	0.53

8.10.9 Summary of Phase I TSR and APA Comparison

Comparing factors that affect moisture damage test results and mixes deemed moisture prone for TSR and APA testing resulted in finding no relationship between the two test methods. Very few of the mixes were considered moisture damage susceptible by both test procedures. The same factors were considered for regression analysis with the exception of compaction and diameter, which were only accounted for in the TSR analysis. There were no similar factors affecting the results of these two tests. When the TSR values were grouped by compaction method and diameter it could be seen that binder PG was the one shared factor that may be affecting the moisture susceptibility (Kvasnak 2006).

8.10.10Comparison of Moisture Susceptibility Testing of HMA Mixes and Asphalt Binders

One part of this research was developing and applying a moisture susceptibility test for asphalt binders. A second portion was examining the use of an APA for moisture susceptibility testing of HMA mixes. In this section data obtained during this research is evaluated to determine if there is a relationship between results obtained for mixes and asphalt binders. Regression analysis was employed to evaluate the relationship between mixes and binders in term of moisture susceptibility. The regression analysis indicated that there is a relationship between the APA, DSR, and water absorbed data. According to the analysis the weight of a binder specimen after 3 minutes and 48 hours has a significant effect on the rut depth of a moisture conditioned specimen tested in water. This indicates that changes in weight due to moisture saturation have an effect on rut depth. Other variables deemed significant were polymer modification, binder content %, gradation, and aggregate angularity (Kvasnak 2006).

Table 8.31 summarizes the materials deemed moisture susceptible by the three different procedures. The solid dots indicate that material collected from that location was deemed moisture susceptible. The strongest agreement occurs between the water absorbed procedure and APA test results. However, material from two sites, Battle Creek and Hartland, were deemed moisture susceptible by three procedures; thus indicating that there is a very strong possibility that these two mixes will be prone rutting caused by moisture damage (Kvasnak 2006).

Table 8.31 Moisture Susceptible Comparison

Site	Water Absorbed	Dynamic Shear Rheometer	Asphalt Pavement Analyzer Based on Ratio	Asphalt Pavement Analyzer Based on Ratio and Maximum Allowable Rut Depth
Ann Arbor				
Battle Creek	•	•	•	
Brighton	•			
Clarkston				
Detroit	•		•	
Dundee 19.0mm NMAS	•		•	
Dundee 12.5mm NMAS			•	
Grand Rapids I-196			•	•
Grand Rapids M-45			•	•
Hartland	•	•	•	
Howell	•		•	
Levering	•		•	
Michigan Ave 19.0mm NMAS			•	
Michigan Ave 12.5mm NMAS				
Michigan International Speedway	•			
Owosso			•	
Pinckney	•			
Saginaw			•	
St. Johns			•	
Toledo			•	
Van Dyke			•	

8.10.11APA Conclusions

In this chapter the use of an APA to evaluate the moisture susceptibility of HMA was explored. The criterion developed to determine whether or not a mix is moisture susceptible

indicated that 2 of the 21 mixes were moisture susceptible. Further analysis revealed that there is a strong relationship between water absorbed data and APA test data. There, however is not a strong relationship between DSR and APA test results, nor is there a strong relationship between TSR results and APA test results. It is recommended that if a loaded wheel tester is to be used for moisture susceptibility testing that more than three specimens be tested. The variability of the rut depth data was rather high and it is believed that additional specimens tested would yield data less affected by outliers (Kvasnak 2006).

8.11 Analysis of Results – DSR

The focus of the analysis was the affects of moisture on the rutting potential of an asphalt binder. The statistical evaluation of the data was grouped by individual filler-asphalt combinations and then comparisons between the groups. In all cases where hypothesis testing was conducted, a level of significance of 0.05 was used.

Part of the analysis conducted was determining if any of the binders failed the Superpave criterion that $G^*/\sin(\delta)$ be greater than 1.0 kPa for unaged binders. It should be noted that this criteria was established for stainless steel and not for a ceramic interfaces. Comparisons between the stainless steel interface and ceramic interface have revealed that the specimens tested with ceramic tend to give a slightly lower $G^*/\sin(\delta)$ value than those tested with a stainless steel interface for unsaturated specimens. The saturated specimens tend to yield greater differences between the two interfaces for $G^*/\sin(\delta)$ values.

The initial analysis examined the effects of moisture on the original binders. The null hypothesis for the following comparisons states that there is no statistical difference between the two original binder data sets examined. Table 8.32 summarizes the results of comparisons conducted to determine if there are significant differences between the testing conditions for

original binders. It can be seen that most of the comparisons indicated that there are statistical differences between the testing conditions; this however does not mean that all of the original binders with statistical differences will be moisture susceptible. It is expected that the varying testing conditions may yield different G* values. However, drastic changes in G* could be indicative of a moisture prone binder. In most cases, the phase angles were statistically equivalent, indicating that a closer examination of the results is needed to determine which binders are moisture susceptible (Kvasnak 2006).

The following analysis summarized in Table 8.32 examined whether the varying G^* and $G^*/\sin(\delta)$ values would result in a revised binder high temperature grade. If different testing conditions result in a new grade, then the binder will be marked as moisture susceptible. The Superpave specification requirement is that $G^*/\sin(\delta)$ is at least 1.0 kPa at the given test temperature. All of the original binders tested within the varying environmental conditions pass the Superpave requirements, however there were several binders after moisture saturation that barely met the 1.0 kPa requirement. The original binders that were close to the 1.0 kPa requirement will be monitored closely for changes with the fillers (Kvasnak 2006).

Table 8.32 Comparison of Testing Conditions for All Data

		Al	LL
		Hydrated Lime	Silica
Unconditioned Water Bath	Complex Modulus	Reject	Reject
Vs.	Phase Angle	Reject	Reject
Water Bath	G*/ sin(δ)	Reject	Reject
Unconditioned Water Bath	Complex Modulus	Reject	Not Rejected
Vater Batti Vs. Unconditioned	Phase Angle	Reject	Not Rejected
Air Chamber	G*/ sin(δ)	Reject	Not Rejected
Conditioned	Complex Modulus	Reject	Reject
Water bat Vs. Conditioned	Phase Angle	Not Rejected	Not Rejected
Air Chamber	G*/ sin(δ)	Reject	Reject
Unconditioned Air Chamber	Complex Modulus	Reject	Reject
Vs.	Phase Angle	Reject	Reject
Air Chamber	G*/ sin(δ)	Reject	Reject

Table 8.33 Comparison of Environmental Testing Conditions and Specimen Condition

	Water Bath Uncondition	th Uncol		ed vs Water	Water	3ath Unc	Water Bath Unconditioned vs Air	vs Air	Water	r Bath C	Water Bath Conditioned vs Air	vs Air	Air Cha	mber Un	Air Chamber Unconditioned vs Air	d vs Air
		Bath Co			Ch	amber U	Chamber Unconditioned	ed	J	hamber	Chamber Conditioned	p∈	S	hamber	Chamber Conditioned	þ
Site	Complex Modulus	Phase Angle	Strain G*/ Amplitude sin(delta)	G*/ sin(delta)	Complex Modulus	Phase Angle	Strain G*/ Amplitude sin(delta)	G*/ sin(delta)	Complex Modulus	Phase Angle	Strain Amplitude	G*/ sin(delta)	Complex Modulus	Phase Angle	Strain Amplitude	G*/ sin(delta)
Pinckney	Accept	Reject	Accept	Accept	Accept	Reject	Reject	Accept	Reject	Reject	Accept	Reject	Accept	Reject	Accept	Accept
VanDyke	Accept	Accept	Accept	Accept	Reject	Reject	Accept	Reject	Reject	Accept	Reject	Accept	Reject	Reject	Accept	Reject
St. Johns	Reject	Reject	Accept	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Accept	Reject
Grand Rapids M-45	Accept	Reject	Accept	Accept	Accept	Reject	Reject	Accept	Reject	Accept	Accept	Reject	Reject	Reject	Accept	Reject
Saginaw	Accept	Accept	Accept	Accept	Reject	Reject	Accept	Accept	Reject	Reject	Reject	Reject	Reject	Reject	Accept	Reject
Michigan Ave 3	Reject	Reject	Accept	Reject	Accept	Reject	Accept	Accept	Reject	Reject	Accept	Reject	Reject	Reject	Accept	Reject
Levering	Reject	Accept	Accept	Reject	Reject	Accept	Accept	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Accept	Reject
Ann Arbor	Accept	Reject	Accept	Accept	Accept	Reject	Accept	Accept	Reject	Accept	Reject	Reject	Accept	Reject	Accept	Accept
Detroit	Reject	Reject	Accept	Reject	Reject	Accept	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Accept	Reject
Toledo	Reject	Reject	Accept	Reject	Reject	Reject	Reject	Reject	Reject	Accept	Reject	Reject	Reject	Reject	Accept	Reject
Heartland	Reject	Reject	Accept	Reject	Reject	Reject	Reject	Reject	Accept	Accept	Reject	Accept	Reject	Reject	Accept	Reject
MIS	Accept	Reject	Accept	Accept	Accept	Accept	Reject	Accept	Reject	Accept	Accept	Reject	Accept	Reject	Accept	Accept
Battle Creek	Reject	Reject	Accept	Reject	Accept	Accept	Accept	Accept	Reject	Reject	Reject	Reject	Accept	Reject	Accept	Accept
Howell	Reject	Reject	Accept	Reject	Reject	Reject	Reject	Reject	Reject	Accept	Reject	Reject	Reject	Reject	Accept	Reject
Clarkston	Accept	Reject	Accept	Accept	Accept	Reject	Reject	Accept	Reject	Reject	Reject	Reject	Reject	Reject	Accept	Reject
Owosso	Reject	Reject	Accept	Reject	Reject	Accept	Accept	Reject	Reject	Reject	Reject	Reject	Accept	Reject	Reject	Accept
Dundee 3	Reject	Reject	Accept	Reject	Reject	Reject	Accept	Reject	Accept	Reject	Reject	Accept	Reject	Reject	Reject	Reject
Brighton	Reject	Reject	Accept	Reject	Accept	Accept	Accept	Accept	Reject	Accept	Reject	Reject	Reject	Reject	Reject	Reject
Michigan Ave 4	Reject	Reject	Accept	Reject	Accept	Accept	Reject	Accept	Reject	Reject	Reject	Reject	Reject	Reject	Accept	Reject
Grand Rapids I-196	Reject	Reject	Accept	Reject	Accept	Reject	Accept	Accept	Reject	Reject	Accept	Reject	Accept	Reject	Accept	Accept
Dundee 4	Accept	Reject	Accept	Accept	Reject	Accept	Reject	Reject	Reject	Accept	Reject	Reject	Accept	Reject	Accept	Accept

8.11.1 Statistical and Graphical Results of Michigan Binders Categorized by Filler Type

Moisture damage issues can arise in HMA pavements even if the asphalt binder has not been found to be moisture susceptible. The moisture susceptibility could be caused by either the aggregate or the interaction between the aggregate and asphalt binder. Two fillers and their interactions with asphalt binders were examined as part of this dissertation. Three percentages by weight were examined to see if different levels of each filler had dissimilar results. The mastics considered were hydrated lime and silica, both passing the #200 sieve. The following analysis explored the affects of each mastic associated with the 21 asphalt binders sampled.

In Table 8.34, comparisons are grouped by filler type and percentage levels. Not pooling the data allows certain trends to be observed. $G^*/\sin(\delta)$ values tend to be deemed statistically similar for comparison of specimens tested in a water bath or unconditioned. Differences begin to arise with an increase level of filler. $G^*/\sin(\delta)$ comparisons are also dissimilar when comparing conditioned specimens or ones tested in an air chamber (Kvasnak 2006).

Table 8.34 Results of Comparing Environmental Testing Conditions by Mastic Percentage Level

		5% Hydrated Lime	5% Silica	10% Hydrated Lime	10% Silica	20% Hydrated Lime	20% Silica
Unconditioned Water Bath Vs. Conditioned Water Bath	Complex Modulus	Not Rejected	Not Rejected	Not Rejected	Reject	Reject	Reject
	Phase Angle	Reject	Reject	Reject	Reject	Reject	Reject
	G*/ sin(δ)	Not Rejected	Not Rejected	Not Rejected	Reject	Reject	Not Rejected
Unconditioned Water Bath Vs. Unconditioned Air Chamber	Complex Modulus	Not Rejected	Not Rejected	Not Rejected	Not Rejected	Not Rejected	Not Rejected
	Phase Angle	Not Rejected	Not Rejected	Not Rejected	Not Rejected	Reject	Reject
	G*/ sin(δ)	Not Rejected	Not Rejected	Not Rejected	Not Rejected	Reject	Not Rejected
Conditioned Water Bath Vs. Conditioned Air Chamber	Complex Modulus	Reject	Reject	Not Rejected	Reject	Reject	Reject
	Phase Angle	Not Rejected	Not Rejected	Reject	Not Rejected	Reject	Not Rejected
	G*/ sin(delta)	Reject	Reject	Not Rejected	Reject	Reject	Reject
Unconditioned Air Chamber Vs. Conditioned Air Chamber	Complex Modulus	Reject	Reject	Reject	Reject	Not Rejected	Reject
	Phase Angle	Reject	Reject	Reject	Reject	Reject	Reject
	G*/ sin(δ)	Reject	Reject	Reject	Reject	Reject	Reject
Conditioned Water Bath Vs. Unconditioned Air Chamber	Complex Modulus	Reject	Reject	Reject	Reject	Reject	Reject
	Phase Angle	Reject	Reject	Reject	Reject	Reject	Reject
	G*/ sin(δ)	Reject	Reject	Reject	Reject	Reject	Reject

8.11.1.1 Effects of Hydrated Lime

Extensive research has been conducted analyzing the advantages of using hydrated lime in binders to resist moisture damage. Since past research has shown that hydrated lime is moisture resistant and aids in preventing moisture damage within HMA, the current research used hydrated lime as a mineral filler to prevent moisture damage. Table 8.35 outlines the results of comparisons conducted to determine if there is a statistical difference between testing conditions results within a certain percentage of filler. The comparisons with the unconditioned samples tested in the water bath for both 5% and 10% of hydrated lime yield statistically

equivalent results with conditioned specimens tested in water bath and unconditioned specimens tested in the air chamber. However, comparisons between conditioned specimens tested in the water bath and unconditioned specimens tested in the air chamber were statistically different for both G^* and $G^*/\sin(\delta)$ implying that there is a shift in the distributions' location, with respect to the unconditioned air chamber specimens, for G^* and $G^*/\sin(\delta)$ after water saturation. In general, binders with 20% hydrated lime are statistically different when comparing environmental test conditions (Kvasnak 2006).

Table 8.35 Results of Hydrated Lime Comparisons Grouped by Percentage of Filler

		5% Lime	10% Lime	20% Lime
Unconditioned Water Bath	Complex Modulus	Not Rejected	Not Rejected	Reject
Vs. Conditioned	G*/ sin(δ)	Not Rejected	Not Rejected	Reject
Unconditioned Water Bath	Complex Modulus	Not Rejected	Not Rejected	Not Rejected
Vs. Unconditioned	G*/ sin(δ)	Not Rejected	Not Rejected	Reject
Conditioned Water Bath	Complex Modulus	Reject	Not Rejected	Reject
Vs. Conditioned	G*/ sin(δ)	Reject	Not Rejected	Reject
Unconditioned Air Chamber	Complex Modulus	Reject	Reject	Not Rejected
Vs. Conditioned	G*/ sin(δ)	Reject	Reject	Reject
Conditioned Water Bath	Complex Modulus	Reject	Reject	Reject
Vs. Unconditioned	G*/ sin(δ)	Reject	Reject	Reject

Table 8.36 summarizes the results of comparisons by site, filler, and percentage of filler. As with the comparisons for the original binders by site, most of the results indicate that the environmental testing conditions yield different G^* and $G^*/\sin(\delta)$ measurements (Kvasnak 2006).

Since the comparisons indicate that there are significant statistical differences between test condition measurements of G^* and $G^*/\sin(\delta)$, the raw data was examined to determine if the addition of hydrated lime was beneficial, detrimental, or had little affect on the G^* and $G^*/\sin(\delta)$ measurements. This was a twofold process where the minimum Superpave requirements were applied and then a comparison between the original binder results and hydrated lime results commenced (Kvasnak 2006).

All of the binders with hydrated lime met the Superpave minimum requirement for $G^*/\sin(\delta)$. However, $G^*/\sin(\delta)$ values did tend to increase for the binders with hydrated lime. The increase in $G^*/\sin(\delta)$ could mean the filler changes to a higher temperature grade, thus enabling the binder to perform better in summer months. Also, a higher $G^*/\sin(\delta)$ for the materials tested in the water bath and/or saturated indicates that the hydrated lime is preventing moisture damage (Kvasnak 2006).

Table 8.37 displays the results of calculating the $G^*/\sin(\delta)$ ratio of hydrated lime to original binders. The values close to 1 indicate that little change occurred and is neither beneficial nor detrimental. Values less than 1, displayed in bold in the table, indicate binders that performed poorly with the hydrated lime when compared with the performance of the binder without hydrated lime. In most cases, the values were greater than 1, which indicates that the hydrated lime improved the performance and resistance to moisture damage. The ratio increases with an increasing percentage of hydrated lime for all but four binders. This increase in the ratio indicates that the hydrated lime is improving the rut resistance of a binder (Kvasnak 2006).

Table 8.36 Results of Hydrated Lime Comparing Testing Conditions

			Unconditioned Water Bath vs Saturated Water Bath		Unconditioned Water Bath vs Unconditioned Air Chamber		Saturated Water Bath vs Saturated Air Chamber		Unconditioned Air Chamber vs Saturated Air Chamber		Saturated Water Bath vs Unconditioned Air Chamber	
Site	Mastic	Percenta ge	Complex Modulus	G*/ sin(delta)	Complex Modulus	G*/ sin(delta)	Complex Modulus	G*/ sin(delta)	Complex Modulus	G*/ sin(delta)	Complex Modulus	G*/ sin(delta)
Ann Arbor	Lime	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Battle Creek	Lime	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject		Not Rejecte
Brighton	Lime	6	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Clarkston	Lime	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Detroit	Lime	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Not Rejecte
Dundee 19.0mm NMAS Dundee 12.5mm NMAS	Lime	5	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject
Grand Rapids M-45	Lime	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Grand Rapids I-196	Lime	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Hartland	Lime	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Howell	Lime	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Levering	Lime	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Michigan Ave 19.0mm NMAS	Lime	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Michigan Ave 12.5mm NMAS	Lime	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Michigan International Speedway	Lime	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Owosso	Lime	6	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Pinckney	Lime	5	Reject	Reject		Not Rejected		Reject	Reject	Reject	Reject	Reject
Saginaw	Lime	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
St. Johns Toledo	Lime	5	Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject	Reject	Reject Reject	Reject Reject	Reject Not Rejecte
Van Dyke	Lime	5	Reject Reject	Reject	Reject	Reject	Reject	Reject Reject	Reject Reject	Reject	Reject	Reject
Ann Arbor	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Battle Creek	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Brighton	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Clarkston	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Not Rejecte
Detroit	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Dundee 19.0mm NMAS	Lime	10	Not Rejected			Reject	Reject	Reject	Reject	Reject	Reject	Reject
Dundee 12.5mm NMAS	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Grand Rapids M-45	Lime	10	Reject	Reject	Reject	Reject		Not Rejected		Reject	Reject	Reject
Grand Rapids I-196	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Hartland	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Howell	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Levering Michigan Ave 19.0mm NMAS	Lime	10	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject
Michigan Ave 12.5mm NMAS	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Michigan International Speedway	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Owosso	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Pinckney	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Saginaw	Lime	10	Reject	Reject		Not Rejected		Reject	Reject	Reject	Reject	Reject
St. Johns	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Toledo	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Van Dyke	Lime	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Ann Arbor	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Battle Creek	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Brighton	Lime	20	Not Rejected		Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Clarkston Detroit	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Dundee 19.0mm NMAS	Lime	20	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject
Dundee 12.5mm NMAS	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Grand Rapids M-45	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Grand Rapids I-196	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Hartland	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Howell	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Levering	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Michigan Ave 19.0mm NMAS	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Michigan Ave 12.5mm NMAS	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Michigan International Speedway	Lime	20	Reject	Reject		Not Rejected	Reject	Reject	Reject	Reject	Reject	Reject
Owosso	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Pinckney	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Saginaw	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
St. Johns Toledo	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
	Lime	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject

Table 8.37 Ratio $G^*/sin(\delta)$ of Hydrated Lime to Original Binder

			Averages				
			Ratio of		.ime:Origina	al Binder	
Site	Mastic	Percentage	wc	AC	wo	AO	
Ann Arbor	Lime	5	1.65	1.74	2.57	1.46	
Ann Arbor	Lime	10	7.99	2.51	3.39	2.06	
Ann Arbor	Lime	20	3.66	2.79	3.95	2.09	
Battle Creek	Lime	5	1.74	2.51	2.05	1.03	
Battle Creek	Lime	10	1.67	3.22	2.16	0.92	
Battle Creek	Lime	20	1.69	3.64	9.41	2.93	
Brighton	Lime	5	0.60	0.89	0.69	0.87	
Brighton	Lime	10	0.60	0.64	0.95	1.09	
Brighton	Lime	20	1.31	1.03	1.32	1.83	
Clarkston	Lime	5	0.86	5.00	2.42	1.31	
Clarkston	Lime	10	1.02	2.42	2.41	1.33	
Clarkston	Lime	20	1.58	3.39	5.02	2.61	
Detroit	Lime	5	1.55	2.29	2.57	1.97	
Detroit	Lime	10	1.82	2.71	3.27	2.96	
Detroit	Lime	20	2.50	3.97	4.44	3.85	
Dundee 19.0mm NMAS	Lime	5	3.97	0.86	1.88	1.11	
Dundee 19.0mm NMAS	Lime	10	0.97	1.22	1.30	1.44	
Dundee 19.0mm NMAS	Lime	20	1.61	1.61	1.93	2.56	
Dundee 12.5mm NMAS	Lime	5	0.73	1.16	1.27	1.18	
Dundee 12.5mm NMAS	Lime	10	1.19	2.42	0.97	1.95	
Dundee 12.5mm NMAS	Lime	20	2.25	3.97	2.11	3.30	
Grand Rapids M-45	Lime	5	0.79	0.74	1.10	0.82	
Grand Rapids M-45	Lime	10	0.99	0.34	1.59	0.68	
Grand Rapids M-45	Lime	20	3.02	0.86	8.11	1.08	
Grand Rapids I-196	Lime	5	1.16	1.19	1.20	0.92	
Grand Rapids I-196	Lime	10	1.60	1.39	1.52	1.28	
Grand Rapids I-196	Lime	20	2.84	2.69	3.29	1.96	
Hartland	Lime	5	2.80	1.65	1.63	2.20	
Hartland	Lime	10	5.13	1.52	2.30	2.62	
Hartland	Lime	20	18.39	2.33	3.41	4.52	
Howell	Lime	5	0.66	1.18	1.68	0.93	
Howell	Lime	10	1.07	1.19	0.88	1.06	
Howell	Lime	20	1.39	2.17	4.37	1.91	
Levering	Lime	5	2.04	0.73	1.67	1.83	
Levering	Lime	10	0.71	1.93	2.42	2.31	
Levering	Lime	20	1.66	2.28	3.41	2.97	
Michigan Ave 19.0mm NMAS	Lime	5	0.70	0.74	1.17	1.19	
Michigan Ave 19.0mm NMAS	Lime	10	1.05	1.47	1.37	2.04	
Michigan Ave 19.0mm NMAS	Lime	20	2.02	0.94	1.66	2.54	
Michigan Ave 12.5mm NMAS	Lime	5	0.42	0.66	0.20	0.67	
Michigan Ave 12.5mm NMAS	Lime	10	0.57	1.10	0.29	0.79	
Michigan Ave 12.5mm NMAS	Lime	20	0.50	1.35	0.36	1.26	
Michigan International Speedway	Lime	5	0.73	0.91	2.04	2.48	
Michigan International Speedway	Lime	10	0.88	1.40	3.19	2.31	
Michigan International Speedway	Lime	20	2.96	1.55	4.71	3.82	
Owosso	Lime	5	1.45	1.15	0.75	1.50	
Owosso	Lime	10	1.45	1.19	1.17	2.82	
Owosso	Lime	20	1.27	1.74	1.67	3.30	
Pinckney	Lime	5	2.71	5.61	3.37	2.88	
Pinckney	Lime	10	2.93	2.30	4.24	2.88	
Pinckney	Lime	20	2.92	0.57	5.55	5.92	
Saginaw	Lime	5	1.06	0.56	2.20	1.16	
Saginaw	Lime	10	3.21	0.77	2.63	2.37	
Saginaw	Lime	20	0.62	0.42	4.08	4.05	
St. Johns	Lime	5	5.04	1.06	0.59	1.71	
St. Johns	Lime	10	4.18	2.09	1.30	1.22	
St. Johns	Lime	20	3.26	2.40	2.18	1.96	
Toledo	Lime	5	2.27	1.76	2.69	2.16	
Toledo	Lime	10	1.25	2.74	3.23	3.19	
Toledo	Lime	20	4.82	3.00	6.36	3.77	
VanDyke	Lime	5	3.67	1.37	2.41	1.92	
	Lime	10	18.18	1.73	3.50	3.52	
VanDyke							

WC= Conditioned Water Bath Specimens, AC= Conditioned Air Chamber Specimens

WO= Unconditioned Water Bath Specimens,, AO=Unconditioned Air Chamber Specimens

8.11.1.2 Effects of Silica

The second filler selected for determining the sensitivity of the new moisture susceptibility test was silica since siliceous materials are known to be moisture prone. The analysis conducted for the binders with hydrated lime were repeated for the binders with silica, as previously described in section 8.11.1.1.

Table 8.38 summarizes the results of comparisons conducted to determine if G^* and $G^*/\sin(\delta)$ are statistically different when measured in dissimilar testing environments. As the table relates, almost all of the comparisons indicate that G^* and $G^*/\sin(\delta)$ are not the same with the exception of the comparison between the unconditioned water bath and unconditioned air chamber. The results indicate that water saturation has a significant impact on G^* and $G^*/\sin(\delta)$ (Kvasnak 2006).

Table 8.38 Results of Comparing Testing Conditions for Binders with Silica

		5% Silica	10% Silica	20% Silica
Unconditioned Water Bath	Complex Modulus	Not Rejected	Reject	Reject
Vs. Conditioned	G*/ sin(δ)	Not Rejected	Reject	Not Rejected
Unconditioned Water Bath	Complex Modulus	Not Rejected	Not Rejected	Not Rejected
Vs. Unconditioned	G*/ sin(δ)	Not Rejected	Not Rejected	Not Rejected
Conditioned Water Bath	Complex Modulus	Reject	Reject	Reject
Vs. Conditioned	G*/ sin(δ)	Reject	Reject	Reject
Unconditioned Air Chamber	Complex Modulus	Reject	Reject	Reject
Vs. Conditioned	G*/ sin(δ)	Reject	Reject	Reject
Conditioned Water Bath	Complex Modulus	Reject	Reject	Reject
Vs. Unconditioned	G*/ sin(δ)	Reject	Reject	Reject

The comparison results comparing environmental testing condition measurements for G^* and $G^*/\sin(\delta)$ are displayed in Table 8.39. It can be seen that very few of the comparisons yield statistically equivalent results.

 $G^*/\sin(\delta)$ ratios of binders with silica to original binders were computed to determine any trends. The computed ratios are displayed in Table 8.40. Unlike the ratios computed with the hydrated lime filler, many of the binders with silica make only a small advantageous contribution if any at all. There are quite a few more silica results with a lower $G^*/\sin(\delta)$ in comparison to the original binder $G^*/\sin(\delta)$. Unlike the hydrated lime, less than half of the binders exhibit an increasing ratio with increasing silica amounts (Kvasnak 2006).

Table 8.39 Results of Comparing Testing Conditions of Binders with Silica by Site

			Bath vs. C	oned Water conditioned r Bath	Bati Uncondit	oned Water h vs. tioned Air mber	Bath vs. C	ned Water conditioned namber	Uncondit Chamb Conditio Char	per vs. oned Air	Bat Uncondi	ned Water h vs. tioned Air mber
Site	Mastic	Percentage	Complex Modulus	G*/ sin(δ)	Complex Modulus	G*/ sin(delta)	Complex Modulus	G*/ sin(delta)	Complex Modulus	G*/ sin(delta)	Complex Modulus	G*/ sin(delta)
Ann Arbor	Silica	- 6	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Battle Creek	Silica	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Brighton	Silica	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Clarkston	Silica	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Detroit	Silica	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Not Rejecte
Dundee 19.0mm NMAS	Silica	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Dundee 12.5mm NMAS Grand Rapids M-45	Silica	5	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Not Rejected	Reject Not Rejected	Reject Reject	Reject Reject	Reject Reject	Reject Reject
Grand Rapids I-196	Silica	5	Reject	Reject		Not Rejected	Reject	Reject	Reject	Reject	Reject	Reject
Hartland	Silica	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Howell	Silica	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Levering	Silica	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Michigan Ave 19.0mm NMAS	Silica	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Michigan Ave 12.5mm NMAS	Silica	- 6	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Michigan International Speedway	Silica	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Owosso	Silica	5	Reject	Reject		Not Rejected	Reject	Reject	Not Rejected		Reject	Reject
Pinckney	Silica	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Saginaw	Silica	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
St. Johns	Silica	5	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Toledo Van Dyke	Silica Silica	5	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject	Not Rejected Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject
Ann Arbor	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Battle Creek	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Brighton	Silica	10	Reject	Not Rejected	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Clarkston	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Detroit	Silica	10	Reject	Not Rejected	Reject	Not Rejected	Reject	Reject	Reject	Reject	Reject	Reject
Dundee 19.0mm NMAS	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Dundee 12.5mm NMAS	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Grand Rapids M-45	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Grand Rapids I-196	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Hartland	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Howell	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Levering	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Michigan Ave 19.0mm NMAS Michigan Ave 12.5mm NMAS	Silica	10	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject
Michigan International Speedway	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject		Not Rejecte
Owosso	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Not Rejected	Reject	Reject	Reject
Pinckney	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Saginaw	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
St. Johns	Silica	10	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Toledo	Silica	10	Reject	Not Rejected		Reject	Reject	Reject	Reject	Reject	Reject	Reject
Van Dyke	Silica	10	Reject	Reject		Not Rejected	Reject	Reject	Reject	Reject	Reject	Reject
Ann Arbor	Silica	20	Reject	Reject	Reject	Reject	Reject	Reject	Not Rejected		Reject	Reject
Battle Creek	Silica	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Brighton	Silica	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Clarkston	Silica	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Detroit Dundee 19.0mm NMAS	Silica	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Dundee 19.0mm NMAS Dundee 12.5mm NMAS	Silica	20	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject	Reject Reject
Grand Rapids M-45	Silica	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Grand Rapids I-196	Silica	20	Reject	Reject		Not Rejected	Reject	Reject	Reject	Reject	Reject	Reject
Hartland	Silica	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Howell	Silica	20		Not Rejected		Reject	Reject	Reject	Reject	Reject	Reject	Reject
Levering	Silica	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Michigan Ave 19.0mm NMAS	Silica	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Michigan Ave 12.5mm NMAS	Silica	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Michigan International Speedway	Silica	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Owosso	Silica	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
Pinckney	Silica	20	Reject	Reject		Not Rejected	Reject	Reject	Reject	Reject	Reject	Reject
Saginaw	Silica	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
St. Johns Toledo	Silica	20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject
		20	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject	Reject

Table 8.40 $G^*/sin(\delta)$ Ratio of Silica to Original Binder

				Ave	Averages			
			Rati	o of Silica:	Original B	nder		
Site	Mastic	Percentage	wc	AC	wo	AO		
Ann Arbor	Silica	5	1.36	2.80	2.27	1.54		
Ann Arbor	Silica	10	2.42	3.04	4.12	3.50		
Ann Arbor	Silica	20	2.79	3.02	1.85	2.67		
Battle Creek	Silica	5	1.29	2.08	1.90	1.93		
Battle Creek	Silica	10	1.47	1.77	2.19	1.72		
Battle Creek	Silica	20	1.99	2.15	2.63	2.16		
Brighton	Silica	5	0.91	0.40	0.90	0.93		
Brighton	Silica	10	0.64	0.65	0.67	0.89		
Brighton	Silica	20	0.70	0.80	0.77	0.84		
Clarkston	Silica	5	0.76	1.19	0.82	0.60		
Clarkston	Silica	10	1.02	1.08	0.98	1.19		
Clarkston	Silica	20	1.29	1.40	0.93	1.01		
Detroit	Silica	5	1.53	1.79	6.40	1.97		
Detroit	Silica	10	2.51	2.02	10.24	2.29		
Detroit	Silica	20	1.80	2.36	2.82	2.71		
Dundee 19.0mm NMAS	Silica	5	0.96	0.87	0.93	1.33		
Dundee 19.0mm NMAS	Silica	10	1.14	0.92	0.98	1.08		
Dundee 19.0mm NMAS	Silica	20	1.32	1.12	1.18	1.42		
Dundee 12.5mm NMAS	Silica	5	0.78	3.68	0.65	1.53		
Dundee 12.5mm NMAS	Silica	10	1.07	1.34	0.93	1.40		
Dundee 12.5mm NMAS	Silica	20	1.47	1.12	1.11	1.62		
Grand Rapids M-45	Silica	5	1.90	0.67	0.99	0.66		
Grand Rapids M-45	Silica	10	0.78	1.05	1.01	0.68		
Grand Rapids M-45	Silica	20	0.84	0.54	0.98	1.38		
Grand Rapids I-196	Silica	5	1.14	3.82	1.39	0.94		
Grand Rapids I-196	Silica	10	1.69	1.45	7.43	1.02		
Grand Rapids I-196	Silica	20	1.89	1.57	2.33	1.62		
Hartland	Silica	5	9.80	2.30	2.00	2.53		
Hartland	Silica	10	2.44	2.49	1.05	2.43		
Hartland	Silica	20	2.60	1.61	1.89	2.95		
Howell	Silica	5	0.85	1.04	2.63	0.85		
Howell	Silica	10	0.60	0.91	1.51	1.01		
Howell	Silica	20	0.65	1.03	0.86	1.20		
Levering	Silica	5	1.05	0.75	1.87	1.53		
Levering	Silica	10	1.41	0.80	1.98	1.96		
Levering	Silica	20	1.34	0.56	2.00	1.72		
Michigan Ave 19.0mm NMAS	Silica	5	0.75	0.68	0.92	1.35		
Michigan Ave 19.0mm NMAS	Silica	10	0.65	0.41	0.80	1.27		
Michigan Ave 19.0mm NMAS	Silica	20	0.87	1.29	1.21	1.56		
Michigan Ave 12.5mm NMAS	Silica	5	0.41	0.58	0.18	0.68		
Michigan Ave 12.5mm NMAS	Silica	10	0.36	0.80	0.21	0.76		
Michigan Ave 12.5mm NMAS	Silica	20	0.55	0.78	0.28	0.88		
Michigan International Speedway	Silica	5	0.67	1.01	2.04	2.46		
Michigan International Speedway	Silica	10	1.68	1.49	7.17	2.89		
Michigan International Speedway	Silica	20	0.83	2.81	2.47	4.16		
Owosso	Silica	5	0.88	1.00	1.06	1.78		
Owosso	Silica	10	0.96	1.51	1.10	2.70		
Owosso	Silica	20	1.07	2.16	1.02	3.07		
Pinckney	Silica	5	4.30	2.02	8.77	2.16		
Pinckney	Silica	10	3.70	1.95	3.65	4.02		
Pinckney	Silica	20	6.03	7.71	3.57	3.12		
Saginaw	Silica	5	1.01	1.66	2.18	2.25		
~ ~gurr	Silica	10	1.79	0.47	2.87	3.04		
Saginaw	- Cilicu		1.16	0.70	2.99	3.76		
Saginaw Saginaw	Silica	20				0.10		
Saginaw	Silica Silica	20 5			1.02	ე ფი		
Saginaw St. Johns	Silica	5	0.92	1.91	1.02	0.99		
Saginaw St. Johns St. Johns	Silica Silica	5 10	0.92 1.73	1.91 1.95	1.11	0.88		
Saginaw St. Johns St. Johns St. Johns	Silica Silica Silica	5 10 20	0.92 1.73 1.82	1.91 1.95 3.09	1.11 1.36	0.88 3.61		
Saginaw St. Johns St. Johns St. Johns Toledo	Silica Silica Silica Silica	5 10 20 5	0.92 1.73 1.82 2.13	1.91 1.95 3.09 1.50	1.11 1.36 2.74	0.88 3.61 2.23		
Saginaw St. Johns St. Johns St. Johns Toledo Toledo	Silica Silica Silica Silica Silica	5 10 20 5 10	0.92 1.73 1.82 2.13 2.53	1.91 1.95 3.09 1.50 2.15	1.11 1.36 2.74 2.39	0.88 3.61 2.23 2.68		
Saginaw St. Johns St. Johns St. Johns Toledo Toledo Toledo	Silica Silica Silica Silica Silica Silica	5 10 20 5 10 20	0.92 1.73 1.82 2.13 2.53 2.66	1.91 1.95 3.09 1.50 2.15 2.44	1.11 1.36 2.74 2.39 3.78	0.88 3.61 2.23 2.68 3.16		
Saginaw St. Johns St. Johns St. Johns Toledo Toledo	Silica Silica Silica Silica Silica	5 10 20 5 10	0.92 1.73 1.82 2.13 2.53	1.91 1.95 3.09 1.50 2.15	1.11 1.36 2.74 2.39	0.88 3.61 2.23 2.68		

All of the binders with silica met the minimum Superpave requirement of 1.0 kPa, but there were several that barely passed. A few of the binders that barely passed were originally well above the minimum requirement, thus indicating that attention should be paid to the interaction between aggregates and binders to prevent moisture damage.

A further analysis of the affects of silica on the moisture susceptibility of asphalt binders was conducted by comparing $G^*/\sin(\delta)$ of specific groupings. The first set of groupings compared conditioned specimens to unconditioned specimens within silica percentage, testing environment, and temperature. The ratio of $G^*/\sin(\delta)$ was used to determine the loss, if any, of $G^*/\sin(\delta)$ of moisture saturated specimens (Kvasnak 2006).

Table 8.41 summarizes the results of this first set of analyses. It can be seen that several groups exhibit a loss of $G^*/\sin(\delta)$ after moisture saturation, to ascertain whether or not the change is due to a viscous or elastic loss, G^* and δ of the respective groups were examined. In all of the cases where there is a loss of $G^*/\sin(\delta)$ with moisture saturation, the viscous component decreases the most in comparison to the elastic component. The decrease in viscosity was the most extreme for the groups containing 10% silica. The loss of elasticity was only apparent in about half of the groups and was slight. Binders with 20% and 5% silica exhibited the greatest decrease in elasticity (Kvasnak 2006).

The second set of analyses examining the ratio of $G^*/\sin(\delta)$ compared environmental testing conditions. $G^*/\sin(\delta)$ computed from specimens tested in a water bath were divided by $G^*/\sin(\delta)$ values determined from specimens tested in the air chamber. The results of these comparisons are displayed in Table 8.41. The comparisons indicate that in most cases $G^*/\sin(\delta)$ measured from specimens tested in a water bath are less than those measured in an air chamber. The groupings exhibiting a loss in $G^*/\sin(\delta)$ were further investigated to determine if the

decrease is due to a loss in the viscous or elastic component. In almost all cases where $G^*/\sin(\delta)$ decreases, the loss of elasticity is greater than the loss of viscosity. The viscosity decrease was greater than the elasticity loss for binders with 10% and 20% silica conditioned tested at 64°C and 5% and 20% silica unconditioned tested at 58°C (Kvasnak 2006).

Table 8.41 Ratio of G*/sin(δ) Conditioned to Unconditioned Specimens

Percentage of Silica	Test Environment	Temperature	G*/sin(δ) Conditoned: Unconditioned
		58	1.36
	Air Chamber	64	1.25
		All	1.28
5		58	0.76
	Water Bath	64	1.06
		All	0.99
	All	All	1.15
		58	2.71
	Air Chamber	64	1.36
		All	1.65
10		58	0.84
	Water Bath	64	0.71
		All	0.73
	All	All	1.14
		58	1.63
	Air Chamber	64	1.08
		All	1.19
20		58	0.90
	Water Bath	64	0.51
		All	0.57
	All	All	0.84

The most extreme comparison case for relating moisture damage was between the unconditioned air chamber samples and conditioned water bath samples. The $G^*/\sin(\delta)$ ratio computed for the extreme case are outlined in Table 8.42. The ratio analysis indicates that there is a loss of $G^*/\sin(\delta)$ after moisture saturation and water bath testing for all classifications. In all cases the decrease in viscosity was greater than the reduction of elasticity. Proportionally, binders with 10% silica exhibited the greatest decline in viscosity compared to elasticity, followed by binders with 20% silica. The loss in viscosity indicates that the binder is more prone to causing rutting issues in HMA pavements. Determining which binders will exhibit a drastic

change in viscosity in advance of its use allows for owner/agencies to replace the binder with a more moisture resistant binder, which is likely less expensive than adjusting the aggregate (Kvasnak 2006).

Table 8.42 Ratio of $G^*/sin(\delta)$ of Specimens Tested in a Water Bath to Those Tested in an Air Chamber

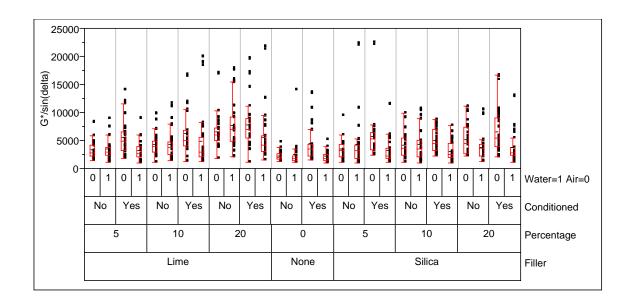

Percentage	Condition		G*/sin(δ)
of Silica	State	Temperature	Water Bath:
or Silica	State		Air Chamber
		58	0.37
	Conditioned	64	0.66
5		All	0.58
3		58	0.66
	Unconditioned	64	0.78
		All	0.75
		58	0.31
	Conditioned	64	0.68
10		All	0.55
10		58	1.01
	Unconditioned	64	1.31
		All	1.24
		58	0.52
	Conditioned	64	0.66
20		All	0.62
20		58	0.94
	Unconditioned	64	1.40
		All	1.31

Table 8.43 Ratio of $G^*/\sin(\delta)$ for Conditioned Water Bath Specimens Versus Unconditioned Air Chamber Specimens with Silica

Percentage of Silica	Temperature	G*/sin(δ) Conditioned Water Bath: Unconditioned Air Chamber
	58	0.85
5	64	0.93
	All	0.91
	58	0.84
10	64	0.72
	All	0.74
	58	0.50
20	64	0.83
	All	0.74

8.11.1.3 Comparison of Hydrated Lime to Silica

The previous sections outlined the advantages and disadvantageous of the fillers detected by the new test method. This section summarizes a comparison of the sensitivity of the new test methods to the selected fillers. Figure 8.69 displays the variability of $G^*/\sin(\delta)$ with the data grouped by environmental testing condition (water bath or air chamber), condition status (unconditioned or saturated), filler percentage, and filler. The variability of the original binders is rather slight in comparison to many of the mastics (Kvasnak 2006).

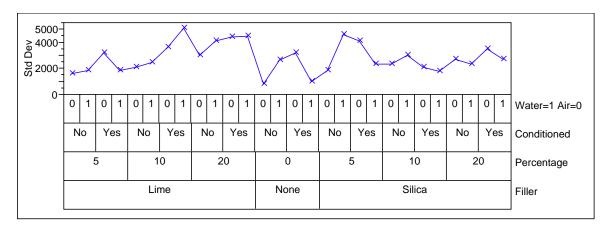


Figure 8.69 Variability Plot of $G^*/\sin(\delta)$

Figure 8.70 illustrates the difference in mean $G^*/\sin(\delta)$ values for original binders grouped by testing environment and condition status. The mean $G^*/\sin(\delta)$ for unconditioned specimens tested in air is almost the same as the conditioned specimens tested in water. The unconditioned specimens tested in water were only slightly greater than the unconditioned specimens tested in air on average. The greatest difference can be seen with the conditioned specimens tested in air (Kvasnak 2006).

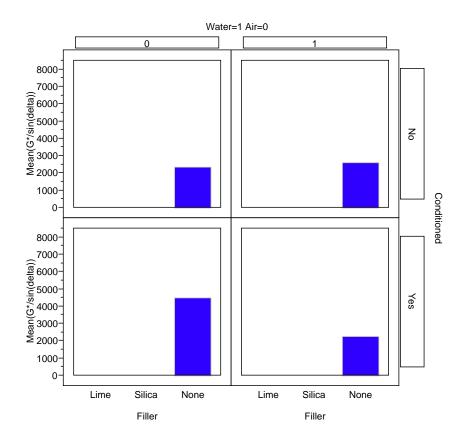


Figure 8.70 Chart of Mean G*/sin(δ) for Neat Binders

Figure 8.71 relates the $G^*/\sin(\delta)$ means for binders with 5% filler grouped by testing environment and condition status. Once again the unconditioned specimens tested in air and conditioned specimens tested in water yielded equivalent $G^*/\sin(\delta)$ means. Interestingly, the binders with silica yielded almost the same mean $G^*/\sin(\delta)$ as the binders with hydrated lime. As with the original binders, the conditioned specimens tested in air yielded the greatest average $G^*/\sin(\delta)$ values. Another possibility is that the saturation process leached out the lighter components of the asphalt binder. Specimens tested after conditioning were exposed to temperatures close to the PG high temperature for longer periods of time due to two test cycles in comparison to the unconditioned test specimens which only endure one test cycle. The difference between the air chamber conditioned specimens and the water bath conditioned

specimens could be attributed to the water bath specimens not having an opportunity for the water logged specimens to dry out, thus the moisture was allowed to soften the binder making it more prone to rutting. The most significant difference between mean $G^*/\sin(\delta)$ values for hydrated lime and silica occurs with the unconditioned specimens tested in water (Kvasnak 2006).

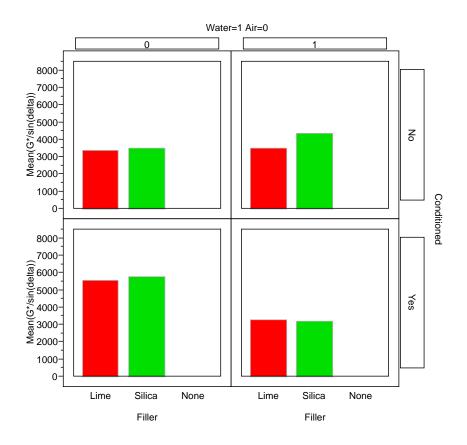


Figure 8.71 Chart of Mean G*/sin(δ) of Binders with 5% Filler

Figure 8.72 graphically summarizes the mean $G^*/\sin(\delta)$ values for binders with 10% filler grouped by testing environment and condition status. With 10% filler, on average, hydrated lime and silica unconditioned specimens tested in water or air are equivalent indicating that at 10% neither filler has a significant effect on the binders prior to moisture saturation

(Kvasnak 2006). Substantial differences between hydrated lime and silica at 10% are seen for the conditioned specimens tested in either water or air (Kvasnak 2006).

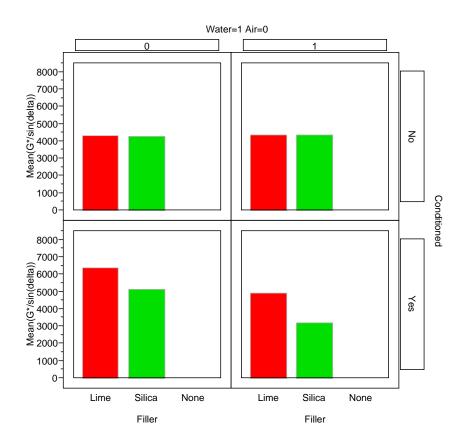


Figure 8.72 Chart of Mean G*/sin(δ) of Binders with 10% Filler

Figure 8.73 illustrates the mean $G^*/\sin(\delta)$ values for binders with 20% filler grouped by condition status and testing environment. It can be seen that for all four testing environment and conditioning combinations, on average, the hydrated lime specimens perform better than the binders with silica. The greatest difference occurs with the unconditioned specimens test in water (Kvasnak 2006).

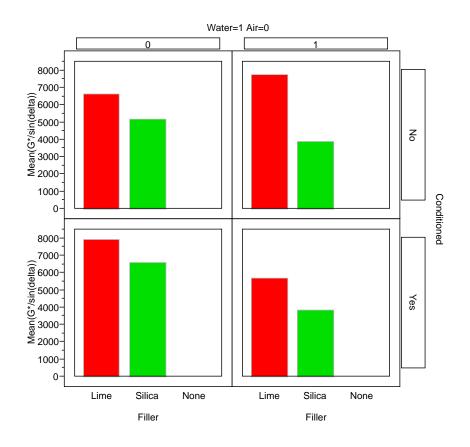


Figure 8.73 Chart of Mean G*/sin(δ) of Binders with 20% Filler

In general, Figures 4.4 through 4.6 relate that as the amount of filler increases the difference in $G^*/\sin(\delta)$ values between the two fillers becomes more pronounced. In comparing the figure of the original binders, to the figures for binders with silica or hydrated lime, it can also be seen that the addition of binder tends to slightly increase the $G^*/\sin(\delta)$ value in most cases, which reiterates that most of the ratios were greater than 1 for both fillers (Kvasnak 2006).

An ANOVA was conducted to determine which factors may be significant. Several variable combinations were examined, altering the variable entered into the analysis first. The analysis indicated that filler type, filler percentage, testing condition, and specimen conditioning are all significant factors contributing to changes in $G^*/\sin(\delta)$ (Kvasnak 2006).

8.11.2 Conclusions about Filler Effects

A new test method for determining moisture susceptibility was developed and this dissertation outlines the results of fillers on binders tested using the new method. The new method appears to be sensitive to the addition of fillers in the binders and is able to distinguish between moisture susceptible fillers and non-moisture susceptible fillers. Interestingly, binders with hydrated lime did not always perform the best. This would indicate that hydrated lime cannot be used for all binders to deter moisture damage. Hydrated lime may not be chemically compatible with all binders for resisting moisture damage (Kvasnak 2006).

None of the binders examined in this dissertation failed the Superpave minimum criteria of $G^*/\sin(\delta)$ being at least 1.0 kPa, however several of the binders did exhibit degradation during testing. During the saturation process many of the binders maintained the original shape prior to saturation, however there were a few binders that tended to spread and even experienced the loss of small sections of binder. The binders which did tend to creep during saturation also emitted a visible oil sheen. Specimens displaying creep and oil sheens tended to yield $G^*/\sin(\delta)$ close to the Superpave minimum of 1.0 kPa indicating that perhaps the criteria should be re-evaluated if used for moisture susceptibility testing (Kvasnak 2006).

8.12 Moisture Damage Factors Affecting TSR and E* Values

This section considers several factors that initiate moisture damage in laboratory tested specimens. The factors being considered are gradation, NMAS, traffic level (mix type), polymer modification, aggregate type, permeability, asphalt content, FAA, RAP, and with dynamic modulus testing frequency. Table 8.44 shows the factors and levels considered for statistical analysis. The general linear models (GLM) procedure was used to determine which factors were considered statistically significant and a multiple comparison procedure using a 5% level of

significance was used to determine if there were statistical differences within the levels for each factor. The GLM procedure gives an F-statistic for each factor based on Type I sum of squares error (SSE) and Type III SSE. For this analysis the Type I SSE will be used to select the appropriate factors that are statistically significant. For this analysis only the Type I SSE will be considered because performing the GLM and analyzing the type I SSE is analogous to performing an eight-way ANVOA on the data set. The GLM is better to use because the user has better control over how the data is input into the model.

Some factors have levels that are determined prior to analysis. Other factors such as permeability, asphalt content, and RAP required classification. Classification was based on clustering observed in graphical representation of data. This method of classification has been employed for permeability in a previous MDOT study concerning the use of a Corelok (Williams et al. 2005). Figure 8.74 shows a graph of permeability versus TSR. From this figure one can see that there is a clear division at approximately 0.002 cm/s. Figure 8.75 shows a graph of RAP versus TSR. From this figure, there are approximately, four division, 0%, 1-10%, 10-15%, and greater than 15%. Figure 8.76 shows a graph of asphalt content versus TSR. From this figure one can see that approximately one-half of the data is less than 5.5% and the other half is greater than 5.5%.

Table 8.44 Factors with Levels Considered for Statistical Analysis

Factors	Levels
Gradation	Coarse
Gradation	Fine
	19.0
NMAS (mm)	12.5
	9.5
Traffic	E3
ESAL's (millions)	E10
LOALS (IIIIIIOIIS)	E30
Polymer	Yes
1 Olymor	No
	Gravel
Aggregate Type	Limestone
	Gabbro
Permeability (cm/s)	<0.002
1 enneability (cm/s)	≥0.002
Asphalt Content (%)	4.6-5.5
Aspiral Content (70)	≥5.5
FAA (%)	<45
1 AA (70)	≥45
	0
RAP (%)	1-10
IXAF (70)	10-15
	≥15
	0.02
	0.1
Eroguenov (U-1)	1.0
Frequency (Hz)	5.0
	10.0
	25.0

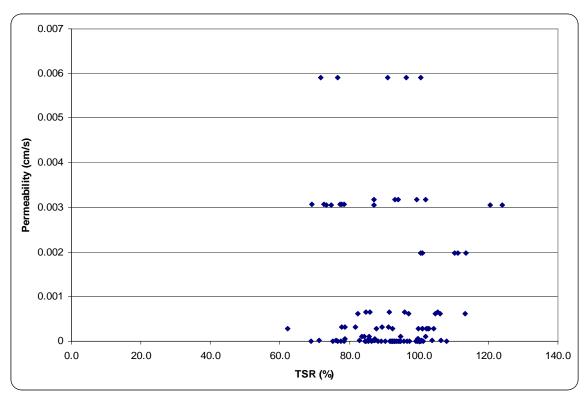


Figure 8.74 TSR versus Permeability

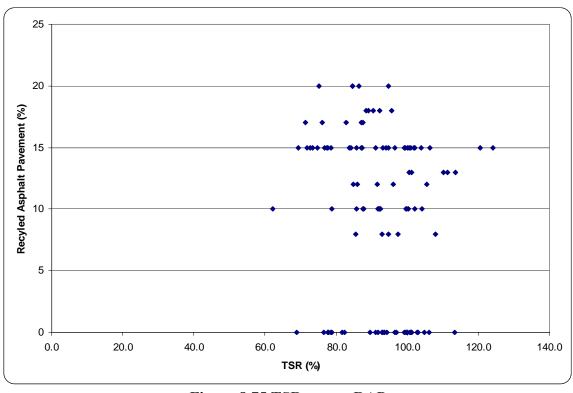
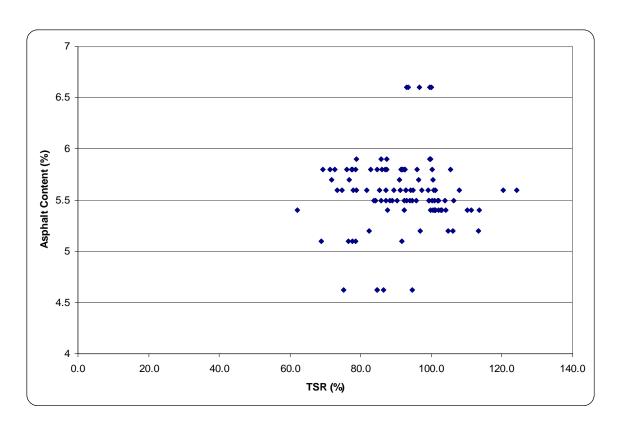



Figure 8.75 TSR versus RAP

Figure 8.76 TSR versus Asphalt Content

The statistical results (Table 8.45) show that polymer, aggregate type, permeability, and RAP are statistically significant variables when TSR is the dependent variable based on Type I SSE using a 5% level of significance.

Table 8.45 GLM p-values Showing Statistically Significant Variables for TSR

Variable	DF	F-Statistic	p-value
Gradation	1	2.15	0.1478
NMAS	2	0.19	0.8269
Traffic	2	2.91	0.0618
Polymer	1	5.96	0.0174
Aggregate Type	2	3.11	0.0513
Permeability	1	10.85	0.0016
Asphalt Content	1	2.46	0.1213
FAA	1	1.70	0.1975
RAP	3	4.47	0.0064

Table 8.46 shows the results of the LSD mean multiple comparison procedure using a 5% level of significance considering the levels within each factor for the TSR data. Means with the

same letter are not statistically different. The LSD results show that for gradation, NMAS, aggregate type, permeability, and FAA there is no statistical difference among the levels within each factor. However, there are statistical differences among the mean levels of TSR for polymer modification and asphalt content. The traffic variable has statistical differences between E3 (3,000,000 ESALs) and E30 (30,000,000 ESAL) mix types. In terms of RAP content, there are no statistical differences among the mean levels of TSR for 0, 1-10% and 10-15% RAP. However, there are statistical differences in mean TSR among those first three levels with the fourth level (≥15%).

Table 8.46 LSD Results for AASHTO T283

Levels					Fa	actors			
Leveis	Gradation	NMAS (mm)	Traffic	Polymer	Aggregate Type	Permeability (cm/s)	Asphalt Content (%)	FAA (%)	RAP (%)
Coarse	A								
Fine	Α								
19.0		A							
12.5		A							
9.5		A							
E3			A						
E10			ВА						
E30			В						
Yes				A					
No				В					
Gravel					A				
Limestone					A				
Gabbro					A				
< 0.002						A			
≥0.002						A			
4.6-5.5							A		
≥5.5							В		
<45								A	
≥45								A	
0									A
1-10									A
10-15									A
≥15									В

The same procedure was used to analyze E* ratio as the dependent variable considering gradation, NMAS, traffic, polymer modification, aggregate type, permeability, asphalt content, FAA, RAP, and frequency. The statistical analysis shows that traffic, aggregate type,

permeability, RAP, and frequency are statistical significant variables based on Type I SSE using a 95% level of significance. The resulting p-values and F-statistic are shown in Table 8.47.

Table 8.47 GLM p-values Showing Statistically Significant Variables for E* Ratio

Variable	DF	F-Statistic	p-value
Gradation	1	0.57	0.4518
NMAS	2	2.46	0.0874
Traffic	2	13.45	<0.0001
Polymer	1	3.49	0.0627
Aggregate Type	2	11.06	<0.0001
Permeability	1	17.04	<0.0001
Asphalt Content	1	0.07	0.7915
FAA	1	0.32	0.5726
RAP	3	5.13	0.0018
Frequency	5	3.06	0.0105

Table 8.48 shows the results of the LSD multiple comparison procedure using a 5% level of significance the levels within each factor for the E* ratio data. Means with the same letter are not statistically different. The LSD results show that gradation and asphalt content show no statistical difference among the levels within each factor. The NMAS variable has statistical differences between 19.0mm and 9.5mm mix types. There are statistical differences among the mean levels of E* ratio for traffic, polymer modification, permeability, and FAA. There appears to be no statistical difference in mean E* values for limestone and gabbro aggregates but there are statistical differences in E* ratio values for between the gravel aggregate and the limestone and gabbro aggregates. In terms of RAP content, there appears to be no statistical difference in E* ratios for 0% and 1-10% RAP and between 10-15% and \geq 15% RAP. However, there are statistical differences between 0% and 1-10% RAP and 10-15 and \geq 15% RAP. In terms of frequency, E* ratio is statistically the same at 0.02, 0.1, 1.0, and 5.0 Hz while E* ratio is statistically the same at 0.1, 1.0, 5.0, 10.0, and 25.0 Hz.

Table 8.48 LSD Results for E* Ratio

					F	actors				
Levels	Gradation	NMAS (mm)	Traffic	Polymer	Aggregate Type	Permeability (cm/s)	Asphalt Content (%)	FAA (%)	RAP (%)	Frequency (Hz)
Coarse	A									
Fine	Α									
19.0		A								
12.5		ВА								
9.5		В								
E3			Α							
E10			В							
E30			C							
Yes				A						
No				В						
Gravel					A					
Limestone					В					
Gabbro					В					
< 0.002						A				
≥0.002						В				
4.6-5.5							A			
≥5.5							A			
<45								A		
≥45								В		
0									A	
1-10									A	
10-15 ≥15									B B	
0.02									В	A
0.02										A
1.0										A
5.0										A
10.0										A
25.0										В
23.0										D

CHAPTER 9 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

9.1 Summary

A number of factors exist that are detrimental to HMA. Moisture damage is a significant factor that impacts HMA; not only the binder but also the mixture component. Moisture damage is important because it can diminish the performance and service life of HMA pavements resulting in increased maintenance and rehabilitation costs of highways. The current method of determining the moisture susceptible of HMA mixtures is AASHTO T283. AASHTO T283 is based upon the Marshall mix design method but current state of the practice for HMA mixture design is the Superpave mix design method. There has not been a transition in test procedure from Marshall mix design to Superpave mix design.

The procedures in AASHTO T283 and NCHRP 9-13 consider the loss of strength due to freeze/thaw cycling and the effects of moisture existing in specimens compared to unconditioned specimens. However, mixtures do not experience such a controlled phenomenon. Pavements undergo cycling of environmental conditions, but when moisture is present, there is repeated hydraulic loading with development of pore pressure in mixtures. Thus, AASHTO T283 and the NCHRP 9-13 study do not consider the effect of pore pressure, but rather consider a single load effect on environmentally conditioned specimens.

This report shows the development of moisture susceptibility procedures which utilize repeated loading testing devices to evaluate mixes and a DSR to evaluate binders and mastics. The two devices used were an APA and an uniaxial compressive tester.

The work outlined in this final report has formed a basis from which MDOT can update their current criteria for TSR and to also update their current method of determining the moisture susceptibility of HMA mixtures.

9.2 Conclusions

Prior to testing of the Michigan asphalt mixtures, extensive research was conducted on determining an equivalent number of freeze/thaw cycles that would achieve moisture damage effects equivalent to ones obtained for 100mm Marshall specimens tested using the original AASHTO T283 specification using the newer Superpave method. The affects of size and compaction method on results obtained following AASHTO T283 procedure were analyzed. Finally, a new minimum TSR can be determined by the analysis instead of using the original TSR of 80% which was based on the original AASHTO T283 specification. Additional preliminary studies were conducted to consider the effects of test temperature and conditioning on dynamic modulus and APA test specimens prior to testing all of the Michigan mixes collected. A binder and mastic preliminary study were also conducted to determine test temperature, condition, interface material, and testing environment. The conclusion of the preliminary testing and final testing are summarized below.

9.2.1 AASHTO T283 – Phase I

The Phase I parametric study considered factors affecting the wet strength of a specimen and new TSR criteria for AASHTO T283 when Superpave compaction method is employed in lieu of the Marshall compaction method. AASHTO T283 was developed based on 100mm Marshall compacted specimens. With the transition from 100mm Marshall compacted specimens to 150mm Superpave compacted specimens it was felt that the requirements outlined in AASHTO T283 should be re-evaluated. It was discovered that one freeze/thaw cycle for conditioning still is satisfactory when using specimens created using the Superpave method. However, to maintain the same probability level as attained with a TSR value for 80% for 100mm Marshall compacted specimens, a TSR value of 87 and 85% should be used,

respectively, with 150mm and 100mm Superpave compacted specimens. An 80% TSR for 150mm Superpave specimens corresponds to a TSR of 70% for 100mm Marshall specimens.

According to the results obtained in this report, three freeze/thaw cycles are adequate when using the AASHTO T283 method in conjunction with 150mm Superpave specimens.

Three freeze/thaw cycles for 150mm Superpave gyratory compacted specimens corresponds to one freeze/thaw cycle for 100mm Marshall specimens. The threshold value should be altered accordingly, as stated above, based on the specimen size.

9.2.2 Moisture Testing – Phase II

Phase II testing of Michigan HMA mixtures outlines moisture susceptibility procedures and preliminary criteria that utilizes repeated loading test devices on specimens in saturated conditions and compares them to unconditioned specimens in a dry test environment. The test criteria for APA tested specimens is the ratio of conditioned rut depth to unconditioned rut depth with values greater than 1 suggesting the mix is moisture damage prone accounting for a maximum allowable rut depth. The criterion developed to determine whether or not a mix is moisture susceptible indicated that 2 of the 21 mixes were moisture susceptible. There is not a strong relationship between DSR and APA test results, nor is there a strong relationship between TSR results and APA test results. It is recommended that if a loaded wheel tester is to be used for moisture susceptibility testing that more than three specimens be tested. The variability of the rut depth data was rather high and it is believed that additional specimens tested would yield data less affected by outliers. Also, a maximum allowable rut depth based on Michigan mixes should be established. The dynamic modulus test procedure test criteria suggested is a retained modulus of 60% of conditioned specimens to unconditioned specimens.

Pavements undergo cycling of environmental conditions, but when moisture is present, there is repeated hydraulic loading with development of pore pressure in mixtures. Thus, AASHTO T283 does not consider the effect of pore pressure, but rather considers a single load effect on environmentally conditioned specimens. Dynamic modulus and APA testing of saturated mixtures better simulates the repeated hydraulic loading pavements undergo. Validation of the proposed criteria will need to be conducted through longer term field monitoring prior to implementing either criterion as a mix design specification for moisture susceptibility testing of HMA.

A number of factors exist that cause or accelerate moisture damage. A statistical analysis performed to determine which factors are significant. It appears that the factors affecting AASHTO T283 are polymer modification, aggregate type, permeability, and RAP. The factors affecting dynamic modulus are traffic, polymer modification, aggregate type, permeability, RAP, and frequency. It has been known that aggregate type, polymer modification, and permeability affect moisture damage. RAP is a highly variable material and it makes sense as to why it may impact moisture damage in HMA pavements. The factors affecting APA test results are test temperature, certain sieve sizes, polymer modification, binder content, fines to binder ratio, NMAS, and traffic level.

A new test method for determining moisture susceptibility of asphalt binders and mastic was developed and this report outlines the results of fillers on binders tested using the new method. The new method appears to be sensitive to the addition of fillers in the binders and is able to distinguish between moisture susceptible fillers and non-moisture susceptible fillers.

None of the binders examined in this report failed the Superpave minimum criteria of $G^*/\sin(\delta)$ being at least 1.0kPa, at the high temperature performance grade, however several of

the binders did exhibit degradation during testing. During the saturation process many of the binders maintained the original shape prior to saturation, however there were a few binders that tended to spread and even lose small sections of the binder. The binders which did tend to creep during saturation also emitted a visible oil sheen in the water bath. Specimens displaying creep and oil sheens tended to yield $G^*/\sin(\delta)$ close to the Superpave minimum of 1.0kPa indicating that another criterion should be used for moisture susceptibility testing. The criterion suggested in this report is to evaluate the viscous and elastic components. If both the viscous and elastic components decrease with moisture saturation, then the binder is deemed moisture susceptible.

Several mixes and binders were deemed moisture damage prone by the three mix tests and binder tests. Table 9.1 summarizes the mixes that might be moisture damage prone. A dot in a box indicates that the material (either mix or binder) failed the criterion for moisture resistance.

Table 9.1 Summary of Moisture Damage Prone Materials

Site	Water Absorbed	Dynamic Shear Rheometer	Asphalt Pavement Analyzer	Asphalt Pavement Analyzer Based on Ratio and Maximum Allowable Rut Depth	AASHTO T283 Current	AASHTO T283 Modified	E* Ratio Current	E* Ratio Modified
Ann Arbor								
Battle Creek	•	•	•					
Brighton	•					•		
Clarkston								
Detroit	•		•					
Dundee 19.0mm NMAS	•		•					
Dundee 12.5mm NMAS			•					
Grand Rapids I-196				•		•		
Grand Rapids M-45			•	•	•	•	•	•
Hartland	•	•	•					
Howell	•		•					
Levering	•		•				•	•
Michigan Ave 19.0mm NMAS			•				•	•
Michigan Ave 12.5mm NMAS							•	•
Michigan International Speedway	•					•		
Owosso			•					
Pinckney	•				•	•	•	•
Saginaw			•			•		•
St. Johns			•					
Toledo			•					
Van Dyke			•					

9.3 Recommendations

Extensive testing has been conducted as part of this research project. This testing has brought to light many issues that are involved in the determining the moisture susceptibility of HMA mixtures. These issues should be addressed prior to their implementation by owner/agencies and industry. Additional research is needed as discussed in the following points:

- The aggregate chemistry and asphalt binder chemistry should be looked at to consider if it is an aggregate issue or a binder issue or both. This testing could be accomplished by using the Wilhelmy Plate and Universal Sorption Device. Extra HMA and binder was sampled during the 2004 and 2005 construction season from each of projects tested therefore the binder can be tested in the Wilhelmy Plate and the aggregate can be extracted from the HMA and then placed in the Universal Sorption Device.
- Additional dynamic modulus testing at the intermediate test temperature and mid-range temperatures.
- Conducting dynamic creep testing using a 0.1sec load time and a longer rest period instead of 0.1sec.
- Field monitoring of sampled mixtures should be done to correlate with the extensive laboratory studied here.
- An examination should be undertaken to apply the Hirsh predictive model. The Hirsh
 model is a newer predictive equation developed by Christensen and Bonaquist (2003) and
 has been shown to address the issues of over prediction seen with the Witczak model.
- Use the AASHTO Mechanistic-Empirical Pavement Design Guide (M-E PDG) to analyze these pavements using Level 1 mix design on the control and moisture

conditioned specimens to look at how distress change when the E* changes due to moisture damage.

- Additional testing should be conducted with the APA.
- Results from the APA testing should be compared with field data to calibrate the criterion.
- Binders should be tested with a DSR using a modified spindle and base plate, as described in this report, and the results compared with field results prior to implementing as a specification.. The binder that should be tested is original binder and binder with a filler. A binder with filler should be tested to allow for breaks in an asphalt binder specimen membrane surface, which enables water to permeate a specimen faster than a specimen without surface breaks. Surface breaks occur in pavements; therefore inducing breaks by adding a filler simulates, to an extent, reality.
- In conjunction with DSR testing results, specimens should be evaluated to determine water absorbing tendencies.

APPENDIX A JOB MIX FORMULAS

Project: M-50 Dundee

Percent 13 13 21 21 27 27 10

3/4 x 1/2 1/2 x 3/8 3/8 x 4 LimeSAND RAP

Mix/Gradation (%P)
100
99.4
87.8
87.8
68.1
37.1
25.3
16.9
12.8
9.9
7.5

Material/Producer HL1

Sieve Size	on Det. 1 (25)	3/4 (19)	4 (12.5)	3/8 (9.5)	A (4.75)	erties #8 (2.36)	.1 #16 (1.18)	#30 (0.60)	.6 #50 (0.30)	.8 #100 (0.15)	#200 (0.075)	14.9	6:		1	36
Asphalt Information	Marathon Det.	: 58-28	5.4	None	%): N/A	sensus Prop	45.1		9.96	93.8	Volumetrics	14	79.9	3	1.1	5.36
Asphalt	Asphalt Source:	Asphalt Grade (PG):	Asphalt Content:	Asphalt Additives:	Asphalt Additives (%):	SuperPave Consensus Properties	Angularity (%):	Dust Corr.:	1 Face Crush (%):	2 Face Crush (%):	Nolu	VMA:	VFA:	AV:	F/P _{be} :	P _{be} :
Project Information	50651A	M-50 Dundee	Cadillac LLC Asphalt	L3	Limestone	3	Coarse	Specifc Gravities	2.511	2.436	1.025	2.737	2.708	Temperature	311-322	275
 Projec	Project No.:	Location:	Contractor:	Traffic Level:	Aggregate Type:	Mix Size:	Gradation:	Spec	G _{mm}	G _{mb}	G _b	G _{se}	G _{sp}	Ter	Mixing (°F):	Compacting ('F):

9.0					———Extraction	→ JMF				
81.1 35.4 3.2 3.21		S2.0							T	ı
81.1 87.4 87.4 8.9		0.61						■		ļ
81.1 85.2 87.4		12.5					```			
9.0	mu)	9.6					a di			
9.0	Sieve Size (mm)	9Ľ†				<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>				
9.0	ieve	2.36	Į	· , &	•					
	ഗ	81.1	No.	[:]						
0.9		9.0	d //y	/						
		6.0	14							
310		31.0								
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)	20)) (Ç	09	Ç		100	,
Percent Passing				Perce	j ju	Ьза	gnisa			

07	0		

Contraction: Cont	Project Information	Project Information	Asphalt Information	rmation	Sieve Size	Mix/Gradation (%P)	Material/Producer	Percent
Mi-36 Asphalt Grade (PG): 64-22 1/2 (12.5) 100	٠:	50717A	Asphalt Source:	Marathon Det.	1 (25)	100	4's	32
Ajax Materials Asphalt Content: 5.8 1/2 (12.5) 85.3 Corp. Corp. Asphalt Additives: None Asphalt Additives: Asph		M-36	Asphalt Grade (PG):	64-22	3/4 (19)	100	1/2"	25
Superative Sup		Ajax Materials Corp.	Asphalt Content:	5.8	1/2 (12.5)	85.3	Man. Sand	15
Sieve Size (mm) Sieve Size	vel:	E3	Asphalt Additives:	None	3/8 (9.5)	71	Man. Sand	10
Coarse Angularity (%): 45.4 #16 (1.18) #16 (1.1	• Type:		Asphalt Additives (%):	N/A	#4 (4.75)	43.8	RAP	15
Coarse Angularity (%): 45.4 #16 (1.18)		3	SuperPave Consen	sus Properties	#8 (2.36)	25.9		
Comparities Dust Corr. C		Coarse	Angularity (%):	45.4	#16 (1.18)	17.5		
2.488 1 Face Crush (%): 99.3 #50 (0.30)	Specifc	Gravities	Dust Corr.:	0.4	#30 (0.60)	13.3		
2.413 2 Face Crush (%): 98.8 #100 (0.15) 1.031 Volumetrics 13.7 #200 (0.075) 2.725 VMA:		2.488	1 Face Crush (%):	66.3	#50 (0:30)	9.6		
1.031 Volumetrics #200 (0.075)		2.413	2 Face Crush (%):	98.8	#100 (0.15)	6.8		
2.725 WMA: 13.7 Temperature AV: 3 1.16 3.12-323 F/P _{be} : 1.16 3.12-323 F/P _{be} : 3 3.12-323 F/P _{be} : 4.57 3.294 P _{be} : 4.57 3.2000 3.2000 3.2000 3.2000 3.2000 3.2000 3.2000 3.2000 3.2000 3.2000 3.2000 3		1.031	Volumet	trics	#200 (0.075)	5.3	Ī	
Temperature AV: 78 Temperature AV: 3 312-323 F/P _{be} : 1.16 312-323 F/P _{be} : 4.57 N50 000 100 100 Sieve Size (mm)		2.725	VMA:	13.7			Ī	
Temperature AV: 3 1.16 312-323 F/P _{be} : 1.16 312-323 F/P _{be} : 1.16 1.16 1.16 3. 3. 3. 3. 3. 3. 3. 3. 3. 3		2.634	VFA:	78				
312-323 F/P _{be} : 1.16 1.16		erature	AV:	3				
294 Pbe:	:(<u>-</u>	312-323	F/P _{be} :	1.16				
81.1 000.	ng (°F):	294	P _{be} :	4.57				
81.1 006. 006. 006. 006. 007. 007. 008. 009.								
300. 300.	 - -		'					
370, 061, 300, 300, 36.2 36.0				•				
300. 300.	 							
270. 000. 000. 000. 000. 000. 000. 000.			**					
86.7 (2008. 2008. 2008. 2008. 2009.	0							
370, 361, 300, 36.2 38.1 36.2 36.0 19.0				•	ı			
370. 361. 306. 36.2 37.4 36.0				1				
87.4 87.4 87.4 87.4 86.2 87.4 87.4 86.2 87.4		1						
670, 681, 606, 606, 652, 87,4, 68,0								
370. 021. 006. 81.1 006. 35.2 36.2 ST.A 036 036 036 (mm)) O:							
006. 006. 006. 006. 007. 008. 008. 008. 009.								
Sieve Size (mm	920	81.1 85.2	09'6					
Sieve Size (mm)		:						
		Siev	re Size (mm)					

25 48 8.5 1.5 Material/Producer 6AA Birdeye Sand #4-0 WW Sand Baghouse (%P) Mix/Gradation 100 98.3 89.6 85.7 74 74 48.5 35.7 16 6.1 4. #100 (0.15) #200 (0.075) -a-Extraction Sieve Size #30 (0.60) #50 (0.30) #8 (2.36) #16 (1.18) 1/2 (12.5) 3/8 (9.5) #4 (4.75) → JMF Asphalt Information
T & M Oil
58-28 Anti-Strip Agent 0.3 92.4 A/N 13.7 4.06 69.7 1.01 Volumetrics 19.0 1 Face Crush (%): 2 Face Crush (%): 15.50 Sieve Size (mm) 9.6 VMA: VFA: AV: F/P_{be}: Project: M-45 Grand Rapids P_{be}: 9Z.4 Project Information

Vo.: 06767A

M-45 Grand Rapids

or: Thompson McCully 2.36 : Gravities 2.509 2.405 2.72 3 Fine 135 E3 81.1 009 300 091 Traffic Level: Aggregate Type: Mix Size: 920 Temperature Compacting: 100 80 9 4 20 0 Project No.: contractor: ocation: Gradation Mixing: Percent Passing

Project: M	Project: M-84 Saginaw			<u>.</u>			
Project II	Project Information	Asphalt Information	rmation	Sieve Size	Mix/Gradation (%P)	Material/Producer	Percent
Project No.:	31804A	Asphalt Source:	Marathon Detroit	1 (25)	100	5/8 CLR	29
Location:	M-84 Saginaw	Asphalt Grade (PG):	58-28	3/4 (19)	100	3/16 Slag	15
Contractor:	Saginaw Asphalt	Asphalt Content:	4.62	1/2 (12.5)	84.6	JK	36
Traffic Level:	E3	Asphalt Additives:	None	3/8 (9.5)	73.9	RAP	20
Aggregate Type:	Slag	Asphalt Additives (%):	N/A	#4 (4.75)	67.4		
Mix Size:	3	SuperPave Consensus Properties	isus Properties	#8 (2.36)	48.5		
Gradation:	Fine	Angularity (%):	44	#16 (1.18)	32.1		
Specifo	Specifc Gravities	Dust Corr.:	0.5	#30 (0.60)	22.3		
G _{mm}	2.55	1 Face Crush (%):	86	#50 (0.30)	13.7		
G _{mb}	2.448	2 Face Crush (%):	N/A	#100 (0.15)	8.2		
G _b	1.022	Volumetrics	rics	#200 (0.075)	5.4		
G _{se}	2.749	VMA:	14.19			Ī	
Gsb	2.721	VFA:	71.81				
Temperature		AV:	4				
Mixing:	303	F/P _{be} :	1.27				
Compacting:	280	P _{be} :	4.25				
100							
001							
80							
			``.				
		· · ·					
000				→ JMF			
				-a- Extraction			
40							
).GL	A. S.						
30							
9							
(a s						
))		09	0				
20 ⁻	31. 08. 08.	3 '6	.eı				
	Siev	ve Size (mm)					

Material/Producer Percent	2304		2217 17		2343 13																									
Mix/Gradation (%P) Materia		6.66	89.3	76.3	45.4	27.9	20.1	15.3	10.2	6.1	4.3																			
Sieve Size		3/4 (19)	1/2 (12.5)	3/8 (9.5)	#4 (4.75)	#8 (2.36)	#16 (1.18)	#30 (0.60)	#50 (0:30)	#100 (0.15)	#200 (0.075)												← JMF	-a- Extraction						
mation	Michigan Paving & Materials	58-22	5.4	None	A/A	sus Properties	46.8	0.4	94.3	N/A	ics	13.92	78.63	2.99	6.0	4.78			` .				<u>†</u>	<u>1</u>						
S Asphalt Information	Asphalt Source:	Asphalt Grade (PG):	Asphalt Content:	Asphalt Additives:	Asphalt Additives (%):	SuperPave Consensus Properties	Angularity (%):	Dust Corr.:	1 Face Crush (%):	2 Face Crush (%):	Volumetrics	VMA:	VFA:	AV:	F/P _{be} :	P _{be} :		•		. / /	· · · · · · · · · · · · · · · · · · ·	<i></i>	<i>[</i>	Ja.	X				6.6 E.S.	e Size (mm)
Project: M-21 St. Johns	3A	hns	Michigan Paving & Materials		Б	3	Coarse	Specifc Gravities	2.488	2.414	1.028	2.708	2.653	_	292-299	276 F									, k			00	181. 06. 06. 1.1	Sieve
Project: M-21 St.	Project No.:	Location:	Contractor:	Traffic Level:	Aggregate Type:	Mix Size:	Gradation:	Specifc (G _{mm}	G _{mb}	G_{p}	Gse	Gsb	Temperature	Mixing:	Compacting:	100)		08 8	6uļ	SS			5011 04	20	■ 4		GZO.	

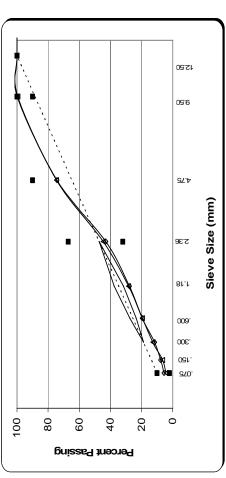
Proje	ct: BL	Project: BL I-96 Howell			i			
	Project In	Project Information	Asphalt Information	ormation	Sieve Size	Mix/Gradation (%P)	Material/Producer	Percent
Project No.:	10.:	50650A	Asphalt Source:	Michigan Paving & Materials	1 (25)	100	25B	19
ocation:		BL I-96Howell	Asphalt Grade (PG):	70-28	3/4 (19)	100	Chelsea Man. Sand	15
Contractor:	or:	Rieth-Riley	Asphalt Content:	5.5	1/2 (12.5)	94.6	Fine Crush	16
Traffic Level:	evel:	E3	Asphalt Additives:	None	3/8 (9.5)	86.3	SNS	32
Aggregate Type:	te Type:	Limestone	Asphalt Additives (%):	A/N	#4 (4.75)	71.1	RAP	15
Mix Size:		4	SuperPave Consensus Properties	nsus Properties	#8 (2.36)	54.7		
Gradation:	n:	Fine	Angularity (%):	42.2	#16 (1.18)	43.5		
	Specifc	Specifc Gravities	Dust Corr.:	0.4	#30 (0.60)	32.7		
G _{mm}		2.48	1 Face Crush (%):	82.5	#50 (0:30)	18.3		
Gmb		2.381	2 Face Crush (%):	N/A	#100 (0.15)	7.6		
ලී		1.028	Volumetrics	itrics	#200 (0.075)	5.1	ı	
Gse		2.702	VMA:	14.8			1	
Gsp		2.641	VFA:	73				
	Tembe	Temperature	AV:	4				
Mixing (°F):		313-319	F/P _{be} :	1.09				
Compacting ('F)	ting (°F):	295	P _{be} :	4.68				
			-					
7	00							
	 				_			
	80							
6ui;								
	60							
		-4		<u></u>	→ JMF			
				<u></u>	- Extraction			
	40	N N						
nə,								
	- 00							
•	7 07							
	- 41	M						
		0 0	09	C				
	1970. 1981.	00£. 008. 11.1 008.	7.4 3.6	n:61				
		Siev	ve Size (mm)					
\int			.			_		

10 15 32 86 Material/Produce Fine MFG Sand MFG Sand RAP **Blend Sand** 3/8 x 4 Mix/Gradation (%P) 98.8 79.5 55.5 39.1 14.8 7.9 100 100 #200 (0.075) #8 (2.36) #16 (1.18) #30 (0.60) #50 (0.30) #100 (0.15) Sieve Size 1/2 (12.5) 3/8 (9.5) #4 (4.75) 3/4 (19) 1 (25) 1250 Asphalt Information
Michigan Paving & Michigan Paving & Materials SuperPave Consensus Properties
Angularity (%): 43.8
Dust Corr.: 0.4 09:6 81.8 N/A 64-28 15.4 1.09 4.95 5.9 74 Volumetrics 9Z.Þ Sieve Size (mm) Asphalt Additives: Asphalt Additives (%) Asphalt Grade (PG): 1 Face Crush (%): 2 Face Crush (%): Asphalt Content: Asphalt Source: 236 VMA: VFA: AV: F/P_{be}: 81.1 M-21 Owosso A
Michigan Paving & A
Materials E3 A
Limestone A
5 Project: M-21 Owosso Temperature 302-315 48612A 1.028 2.708 2.637 009. 2.371 Fine Specifc Gravities Project Information 00ε. 09l. **9**20. Traffic Level: Aggregate Type: Compacting (°F) 100 80 9 40 20 0 Project No.: Contractor: Mixing (°F): Gradation Mix Size: ocation: Percent Passing Gmb

19 15 35 15 15 Chelsea Man. Sand Fine Crush 2NS RAP Material/Producer 25B Mix/Gradation (%P) 100 94.6 86.3 71.1 54.7 43.5 32.7 18.3 100 5.1 #200 (0.075) #30 (0.60) #50 (0.30) #100 (0.15) Sieve Size 3/4 (19) 1/2 (12.5) 3/8 (9.5) #4 (4.75) #8 (2.36) #16 (1.18) 1 (25) 0.61 Asphalt Information
Michigan Paving & Materials 1250 SuperPave Consensus Properties
Angularity (%): 42.2 64-28 5.5 None N/A 0.4 82.5 N/A 14.8 72.8 1.09 4.68 09.6 Volumetrics Asphalt Grade (PG):
Asphalt Content:
Asphalt Additives:
Asphalt Additives (%): Sieve Size (mm) 1 Face Crush (%): 2 Face Crush (%): 9Z.Þ Asphalt Source: Dust Corr. 236 VMA: VFA: AV: F/P_{be}: Project: M-66 Battle Creek 81.1 Battle Creek Rieth-Riley E3 Temperature 302-315 Specifc Gravities
2.48
2.38 50759A 1.027 2.702 2.641 009. Fine OOE. 09L GZ0. Contractor: Traffic Level: Aggregate Type: Compacting ("F) 100 20 0 80 9 4 Project No.: Mixing (°F): ocation: Gradation Mix Size: Percent Passing രീ

າ (%P) Material/Producer Per	100 1/4 Chip 10	100 1/2 × 3/8 24	99.1 3/8 × 4 18	86.9 Trap. Sand 18	58.3 Lime Sand 30	37.2 RAP 0	21.1	14	9.5	7.3	5.1																	
Size	1 (25)	3/4 (19)	1/2 (12.5)	3/8 (9.5)	#4 (4.75)	#8 (2.36)	#16 (1.18)	#30 (0.60)	#50 (0.30)	#100 (0.15)	#200 (0.075)									Ļ		-A- Extraction						
rmation	MTM Oil	64-28	5.6	None	N/A	sus Properties	46		86	96	rics	16	74.9	4	-	5.10					<u> </u>	ַן 				0.61		
Asphalt Information	Asphalt Source:	Asphalt Grade (PG):	Asphalt Content:	Asphalt Additives:	Asphalt Additives (%):	SuperPave Consensus Properties	Angularity (%):	Dust Corr.:	1 Face Crush (%):	2 Face Crush (%):	Volumetrics	VMA:	VFA:	AV:	F/P _{be} :	P _{be} :					N. S.					09.50	i	Sieve Size (mm)
Project Information	50651A	M-50	Cadillac LLC Asphalt			4	Coarse	Specifc Gravities	2.52	2.419	1.027	2.759	2.717	Temperature	11-322	275					'			N. A.		9£71 9£73 8171 009 00£		Sieve Si
	Project No.:	Location:	Contractor:	Traffic Level:	Aggregate Type:	Mix Size:	Gradation:	Specif	G _{mm}	G _{mb}	g _b	Gse	Gsb	Tem	Mixing (^o F):	Compacting (°F):	100	3	- 08	SSE		ne:	O-G-LC	20	(920		

728 26 Man. Sand Mix/Gradation (%P) 83.1 52.5 30.8 30.8 14.6 9.9 6.7 100 9 #200 (0.075) #100 (0.15) #8 (2.36) #16 (1.18) (0:30) 1/2 (12.5) (09.0) (0# (4.75) 3/4 (19) 0.61 Marathon Det. 64-28 12.50 SuperPave Consensus Properties
Angularity (%): 42.4 98.7 14.8 72.9 5.8 . 09:6 Asphalt Information Volumetrics Sieve Size (mm) Asphalt Source: Asphalt Grade (PG): 9Z.4 1 Face Crush (%): 2 Face Crush (%): Asphalt Additives: Asphalt Additives Asphalt Content: Dust Corr. 2:36 VMA: VFA: AV: F/P_{be}: 81.1 Ajax Materials Corp. Project Information
ect No.: 50714A
attion: US-12 MIS 009. | Coarse | Specifc Gravities | 2.49 | 2.39 | Project: US-12 MIS Temperature F): 309-321 1.026 2.729 E3 OOE. 120 920 Compacting ("F): Aggregate Type: 100 40 20 0 80 9 raffic Level Project No.: Mixing (°F): Contractor: Gradation: Location: Mix Size: Percent Passing Gmb ര്


Percent 33 25 15 15 15 Material/Producer #4's Man. Sand Man. Sand Sora RAP Mix/Gradation (%P) 100 100 85.3 85.3 71 71 25.9 17.5 13.3 9.6 8.9 5.3 #200 (0.075) #100 (0.15) #16 (1.18) #30 (0.60) #50 (0.30) 3/8 (9.5) #4 (4.75) #8 (2.36) -a- Extraction → JMF 13.3 4.42 76.7 3.1 1.2 Asphalt Information Volumetrics 25.0 Asphalt Source:
Asphalt Grade (PG):
Asphalt Content:
Asphalt Additives:
Asphalt Additives: 19.0 Project: Michigan Avenue, Dearborn 12.50 Sieve Size (mm) VMA: VFA: AV: F/P_{be}: 09.6 Michigan Ave. Ajax Materials Corp. E10 9Z.4 Temperature 297-309 47064A Specifc Gravities
2.496 274-284 2.419 1.025 2.725 2.634 Project Information 2.36 81.1 009 00ε. 091. Traffic Level: Aggregate Type: Mix Size: 940 Compacting (°F): 100 80 9 20 Project No.: 40 0 Contractor: Mixing (°F): Percent Passing

43 15 ω Mfg. Sand Otr. Mix/Gradation 83.9 66.6 66.6 43.7 30.5 21.2 11 6.2 98.9 90 4.3 #50 (0.30) #100 (0.15) #200 (0.075) 3/8 (9.5) #4 (4.75) #8 (2.36) #16 (1.18) #30 (0.60) 1/2 (12.5) 3/4 (19) -a-Extraction → JMF Marathon Det. 64-22 SuperPave Consensus Properties
Angularity (%): 45.8
Dust Corr.: None N/A 98.4 14.6 78.2 3.2 0.86 5.00 5.2 Volumetrics 0.25 Asphalt Source: Asphalt Grade (PG): 1 Face Crush (%): 2 Face Crush (%): Asphalt Additives: Asphalt Additives Asphalt Content: 19.0 12.50 Sieve Size (mm) VMA: VFA: AV: F/P_{be}: 09.6 46273A M53/28 Mi to 31 Mi Rd. National Asphalt Products E30 Project: Vandyke, Detroit 37.4 310-322 2.577 2.495 1.031 2.769 Fine Specifc Gravities 2.36 **Temperature** 81.1 009 00E. 09L Traffic Level: Aggregate Type: Mix Size: Compacting ("F): <u>9</u>20. 100 80 40 20 0 Contractor: Mixing (°F): 9 radation Percent Passing

Project:	Project: US-23 Heartland	Asphalt Information	rmation	Sieve Size	Mix/Gradation (%P)	Material/Producer	Percent
Project No.:	34519A	Asphalt Source:	Marathon Detroit	1 (25)	100	1/2 x 3/8	20
Location:	US-23/M-59 Interchange	le Asphalt Grade (PG):	64-22	3/4 (19)	6'66	$3/4 \times 1/2$	20
Contractor:			5.5	1/2 (12.5)	88.2	Man. Sand	15
Traffic Level:		Asphalt Additives:	None	3/8 (9.5)	72.6	Man. Sand	30
Aggregate Type:	ype: Limestone	Asphalt Additives (%):	N/A	#4 (4.75)	49.1	RAP	15
Mix Size:	е	SuperPave Consensus Properties	sus Properties	#8 (2.36)	31.8		
Gradation:	Coarse	Angularity (%):	45.5	#16 (1.18)	20.7		
	Specifc Gravities	Dust Corr.:	0.4	(09:0) 08#	14.5		
G _{mm}	2.494	1 Face Crush (%):	98.1	#50 (0:30)	6.6		
G _{mb}	2.419	2 Face Crush (%):	7.76	#100 (0.15)	6.3		
ගි	1.031	Volumetrics	rics	#200 (0.075)	4.6		
Gse	2.718	VMA:	13.8				
G _{sb}	2.652	VFA:	78.2				
	Temperature	AV:	8				
Mixing (°F):	312-323	F/P _{be} :	1				
Compacting ("F)	(°F): 294	P _{be} .	4.60				
	-						
100	ī						
3							
			·,				
80							
		;;;					
9 3			1	→ JMF			
l Ju	•		# 	- Extraction			
19: 40							
erc							
d							
707							
0	0 0 8 8	09	0				
	670. 081. 08. 08. 1.1 5.2	9.51 9.21	SZ				
	Sieve	Sieve Size (mm)					

Project:	Project: I-75 Levering	Road Asphalt Information	mation	Size	Mix/Gradation (%P)	Material/Producer	Percent
Project No.:	53288A	Asphalt Source:	BP	1 (25)	100	3/4" Stone	12
ocation:	I-75 Levering Rd.	٠.	58-28	3/4 (19)	100	9/16" Stone	28
Contractor:	H & D Inc.	Asphalt Content:	5.5	1/2 (12.5)	89.4	Wash Fines	17
Fraffic Level:	E10	Asphalt Additives:	None	3/8 (9.5)	80.5	Cr. Sand	25
Aggregate Type:	:be:	Asphalt Additives (%):	A/N	#4 (4.75)	59.3	RAP	18
Mix Size:	ဧ	SuperPave Consensus Properties	sus Properties	#8 (2.36)	48.2		
Gradation:	Fine	Angularity (%):	43.1	#16 (1.18)	38.3		
Spe	Specifc Gravities	Dust Corr.:	0.5	#30 (0:00)	28.7		
G _{mm}	2.43	1 Face Crush (%):	626	#50 (0:30)	12.9		
G _{mb}	2.357	2 Face Crush (%):	A/N	#100 (0.15)	6.8	1	
G _b	1.031	Volumetrics	rics	#200 (0.075)	5.4		
G _{se}	2.639	VMA:	14.1			1	
Gsb	2.592	VFA:	62				
Temperature	re	AV:	3				
Mixing:	290	F/P _{be} :	1.11				
Compacting:	266	P _{be} :	4.86				
100							
3			<u>'</u>				
C			•				
_ _ _ _							
guia							
92				L			
Я'n	**			-e- JIMIP Extraction			
190							
)JƏ _C	N. C.						
300							
2							
c							
) D	021 005 006 81.1 85.2	92.4 08.50	0.61				
	Sie	Sieve Size (mm)					

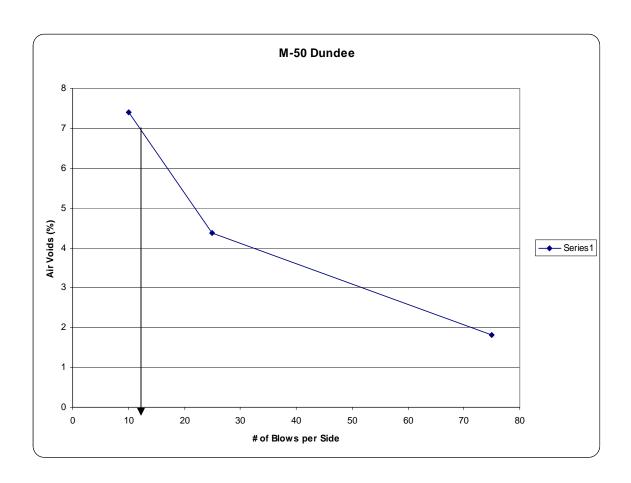
12 45 10 13 20 Material/Produce Man. Sand Fine Crush 3/8 × 4 31A Mix/Gradation (%P) 99.9 74.3 43 27.8 19.5 11.7 100 100 100 #200 (0.075) #8 (2.36) #16 (1.18) #30 (0.60) #50 (0.30) #100 (0.15) 1/2 (12.5) 3/8 (9.5) #4 (4.75) 3/4 (19) 1 (25) Asphalt Information
Michigan Paving & Materials SuperPave Consensus Properties
Angularity (%):
Aust Corr.: 64-22 None N/A 15.3 73.8 91 4.58 5.6 1.2 Volumetrics Asphalt Additives: Asphalt Additives (%) Asphalt Grade (PG): 1 Face Crush (%): 2 Face Crush (%): Asphalt Content: Asphalt Source: VMA: VFA: Project: I-196 Grand Rapids
Project Information AV: F/P_{be}: I-196 Grand Rapids A Michigan Paving & A Materials E10 Limestone 5 Specifc Gravities
2.499
2.399 311-322 74784A 1.036 Coarse 2.73 **Femperature** Traffic Level: Aggregate Type: Compacting ("F) Project No.: Contractor: Mixing (°F): Gradation ocation:

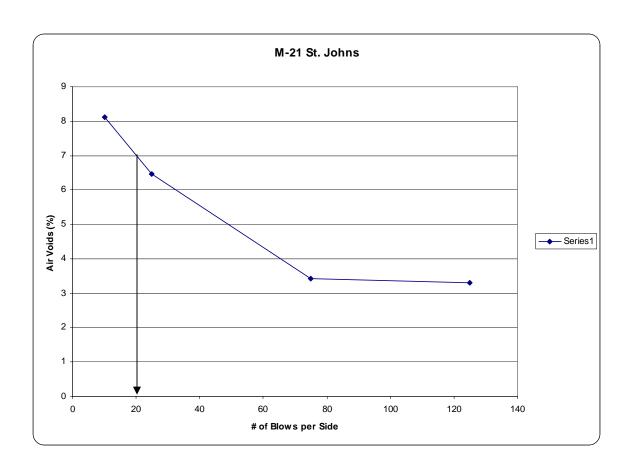
Material/Producer #3's 3CS 3/8 x #4 BF RAP 3/8 x #4 MS-6 Mix/Gradation (%P) 100 100 91.1 85.9 35 225.5 18.7 12.7 6 #200 (0.075) #100 (0.15) 3/4 (19) 1/2 (12.5) 3/8 (9.5) #4 (4.75) #8 (2.36) #16 (1.18) #30 (0.60) #50 (0.30) —≜—Extraction Asphalt Source: Marathon Det.
Asphalt Grade (PG): 70-22
Asphalt Content: 5.8
Asphalt Additives: None
Asphalt Additives (%): N/A
SuperPave Consensus Properties
Angularity (%): 45.3 → JMF 98.5 95.1 14.7 72.8 4.56 4 0.9 Asphalt Information Volumetrics 2 Face Crush (%): Face Crush (%): 0.61 Dust Corr.: VMA: VFA: AV: F/P_{be}: Size (mm) 15.50 51472A I-75 Clarkston Ace Asphalt & Paving E30 Slag 4 09.6 Sieve ! Temperature 309-329 9Z.4 Project: I-75 Clarkston 289-309 2.699 2.616 2.369 2.467 Project Information Specifc Gravities 2.36 81.1 009 300 091. Contractor: Traffic Level: Aggregate Type: Mix Size: 270. Compacting 100 80 20 9 0 Mixing (°F): 40 Project No.: Gradation: Percent Passing a B

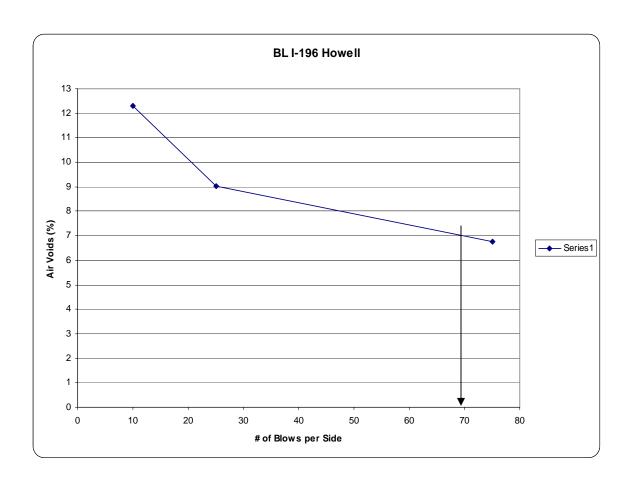
13 34 11 Mfg. Sand HL3 RAP Otr Sand Mix/Gradation 98.6 86.7 51.1 29.3 19.7 14 9.5 6.1 100 #50 (0.30) #100 (0.15) #200 (0.075) #16 (1.18) #30 (0.60) 3/8 (9.5) #4 (4.75) #8 (2.36) 1/2 (12.5) 3/4 (19) --- Extraction → JMF SuperPave Consensus Properties ngularity (%): 45.9 None N/A 95.6 92.8 15.5 74.2 0.99 4.55 5.6 Asphalt Information Volumetrics 19.0 Asphalt Source: Asphalt Grade (PG): 1 Face Crush (%): 2 Face Crush (%): Asphalt Additives: Asphalt Additives Asphalt Content: Angularity (%): 12.50 Dust Corr.: Project: M-53 Detroit, 8 Mile Road VMA: VFA: AV: F/P_{be}: 09.6 ... M-53 Detroit,
Project Information
52804A/52805A
M-53/M-3 to M-102
National Asphalt
E10 9Z.4 309-329 289-309 Coarse 2.796 2.553 2.451 1.035 2.36 Specifc Gravities **Femperature** 81.1 009 00ε. 091. Traffic Level: Aggregate Type: Mix Size: Compacting ("F): GY0. 100 40 80 20 0 Contractor: Mixing (°F): 9 radation: Percent Passing

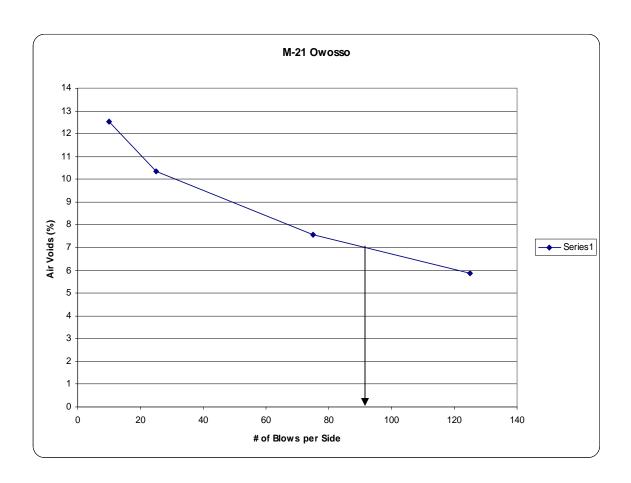
Sieve Size (mm)

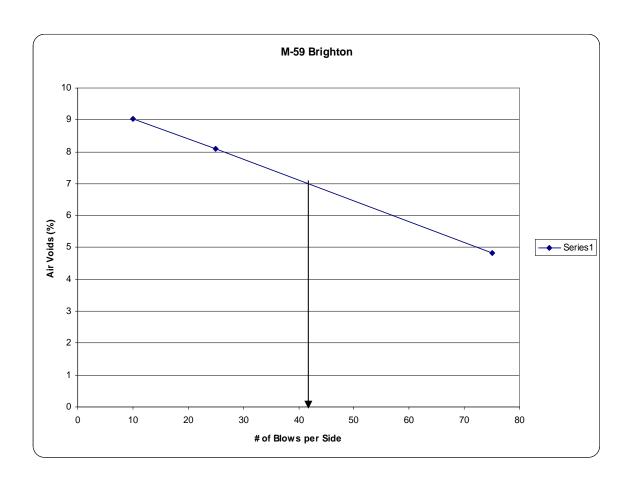
25 18 10 10 Material/Producer Man. Sand 1/2 x 3/8 Man. Sand Mix/Gradation (%P) 100 100 98.8 90 90 57.1 20 20 14.6 10 6.4 4.6 #200 (0.075) #100 (0.15) #16 (1.18) #30 (0.60) #50 (0.30) 3/8 (9.5) #4 (4.75) #8 (2.36) -a-Extraction → JMF 98.8 6.76 74.5 15.7 6.0 5.11 Asphalt Information Volumetrics Asphalt Source:
Asphalt Grade (PG):
Asphalt Content:
Asphalt Additives:
Asphalt Additives: 1 Face Crush (%): 2 Face Crush (%): 19.0 Project: Michigan Avenue, Dearborn Sieve Size (mm) VMA: VFA: AV: F/P_{be}: 12.50 09.6 Michigan Ave. Ajax Materials Corp. E10 9Z.4 Specifc Gravities
2.464 remperature 309-329 289-309 Project Information 47064A 2.366 1.035 2.693 2.644 2.36 009. 81.1 00E. 09L Traffic Level: Aggregate Type: Mix Size: Compacting (°F): 920 100 80 9 40 20 Project No.: 0 Contractor: Mixing (°F): Percent Passing

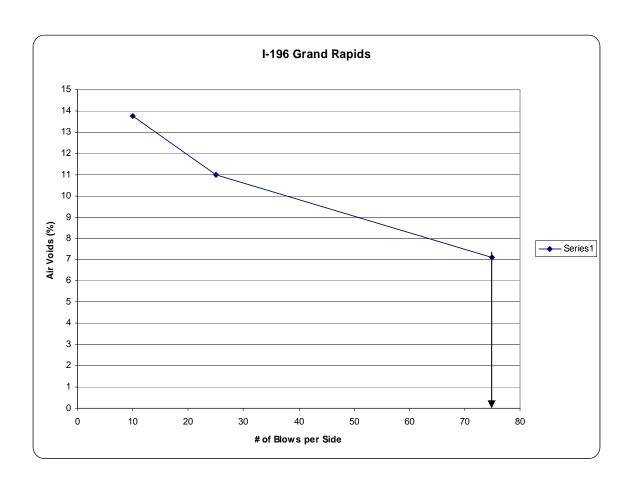

Percent 10 32 10 28 Material/Producer Man. Sand 1/4" Chip 1/2" Clear Fine Crush Man. Sand 3/8 x #4 Mix/Gradation (%P) 95.4 64.5 36.4 22.4 16.5 11.6 100 100 5.4 #200 (0.075) Sieve Size #100 (0.15) 3/8 (9.5) #4 (4.75) #8 (2.36) #16 (1.18) #30 (0.60) #50 (0.30) 1/2 (12.5) -a-Extraction 3/4 (19) → JMF Asphalt Information
Asphalt Source: 6505 MPM Oil SuperPave Consensus Properties Angularity (%): 46 Dust Corr.: 74.8 None N/A 15.9 96.1 1.07 5.4 98 0.32 Volumetrics 19.0 Asphalt Grade (PG): 1 Face Crush (%): 2 Face Crush (%): Asphalt Additives: Asphalt Additives Asphalt Content: Sieve Size (mm) 12.50 09.6 VMA: F/P_{be}: VFA: 9Z.4 I-75 Cadillac Asphalt L.L.C. Specific Gravities
2.51
2.409 Temperature 311-322 2.36 Project Information
Project No.: 74577A 1.029 2.711 290 E30 2 81.1 009 00ε. 09l Aggregate Type: Mix Size: Compacting (°F): **9**40 raffic Level: 100 80 9 40 20 0 Contractor: Mixing (°F) Percent Passing ര്

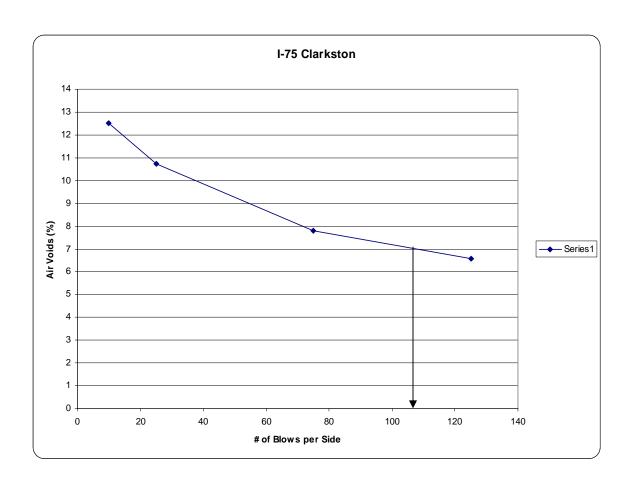

Project: I-75 Toledo


Project: I-94 And Project Information	ΔŢ,	rbor Asphalt Information	mation	Sieve Size	Mix/Gradation (%P)	Material/Producer	Percent
	7	Asphalt Source:	Ē ⊗ ⊠	1 (25)	100	3/8 × 0	21.5
	_	Asphalt Grade (PG):	70-22	3/4 (19)	100	3/8 × 4	14.7
Contractor:	_	Asphalt Content:	9.9	1/2 (12.5)	2'96	3/8	14.7
Traffic Level:	E30	Asphalt Additives:	Cellulose Fibers	3/8 (9.5)	79	Trap Chip	14.7
Aggregate Type:		Asphalt Additives (%):	0.3	#4 (4.75)	35.8	HL1	28.3
Mix Size:	4	SuperPave Consensus Properties	sus Properties	#8 (2.36)	17.8	Mineral Filler	4
Gradation:	14	Angularity (%):	46.4	#16 (1.18)	13.7	Break-down	2.1
Specifc Gravities		Dust Corr.:	0.4	#30 (0.60)	11.8		
	14	1 Face Crush (%):	2.66	#50 (0.30)	10.7		
	2.413	2 Face Crush (%):	99.2	#100 (0.15)	9.5		
		Volumetrics	rics	#200 (0.075)	8.3		
	2.798	VMA:	17.8			1	
	2.742	VFA:	77.4				
Temperature		AV:	4				
		F/P _{be} :	1.41				
Compacting:	163	P _{be} :	5.89				
			1				
] ML				Γ			
		- `					
80							
		<i> </i>					
		•		→ JMF			
				-a-Extraction	tion		
40		1					
	[:]						
20							
	The state of the s	\$					
	1 =						
270. 021.	006. 000. 81.1	37.4 35.6 36.21	0.61				
		Sieve Size (mm)					
		01640 0120 (11111))		


APPENDIX B SPECIMEN VOLUMETRICS


Phase I – Compaction Curves for Marshall Specimens





Phase I – 100mm Marshall Specimens

•	•••		ш	T▲	16	11	3				շբ	CCI		•		3		
20	1185.8	99.99	67.83	68.04	66.83	67.34	102.360	102.100	102.230	2.145	14.9		20	1185.8	687.4	1198.5	2.320	6.7
19	1186	67.73	67.45	67.49	67.72	09'29	101.900	101.720	101.810	2.155	14.5		19	1185.7	693.1	1200.4	2.337	7.3
18	1190	68.63	68.59	68.07	69.38	68.67	101.270	101.500	101.385	2.147	14.8		18	1190	8.969	1207.5	2.330	7.5
17	1196.6	68.01	68.22	68.57	68.53	68.33	101.640	101.520	101.580	2.161	14.3		17	1196.4	698.7	1212.1	2.330	7.5
16	1196.2	29:89	68.34	68.72	69.27	68.73	101.580	101.190	101.385	2.156	14.4		16	1196.1	9.669	1213.6	2.327	7.7
15	1194.8	68.71	69.25	68.68	68.24	68.72	101.420	100.960	101.190	2.162	14.2		15	1194.3	699.4	1213	2.325	7.7
14	1191.3	00'69	3.00	08'89	08'30	26'29	102.240	101.770	102.005	2.145	14.9		14	1191.3	698.5	1212.4	2.318	0'8
13	1192.4	68.47	69.22	68.47	68.12	25'89	100.520	101.390	100.955	2.172	13.8		13	11923	2'269	1210.7	2.324	8.7
12	1201.1	67.34	67.31	67.92	99'89	18.79	101.180	101.140	101.160	2.204	12.5		12	1201.1	2.869	1210.6	2.346	6.9
1	1194.3	64.40	64.37	64.94	64.11	64.46	101.120	101.220	101.170	2.305	8.5		11	1194.3	691.1	1198.5	2.354	9.9
10	1198.8	06.20	66.12	16.31	29'99	66.33	101.860	101.940	101.900	2.216	12.1		3	1198.8	693.3	1205.8	5.339	7.2
6	1198.3	67.28	67.18	67.21	67.85	67.38	100.840	101.540	101.190	2.211	12.2		6	1198.3	97.69	1209.6	2.340	7.1
8	1196.2	66.53	98.59	65.42	66.02	96'39	101.500	101.770	101.635	2.235	11.3		8	1196.2	2'969	1202.8	2.364	6.2
,	1199.7	68.04	68.27	68.53	67.94	68.20	100.970	101.240	101.105	2.191	13.0		7	1199.7	697.2	1211.4	2.333	7.4
9	1186.8	64.73	65.33	64.41	64.50	64.74	101.690	101.900	101.795	2.252	10.6		9	1186.7	7.789	1192.1	2.353	9.9
2	1194.9	90'29	67.03	67.40	67.45	67.24	101.460	101.930	101.695	2.188	13.2		2	1194.9	2.569	1207.1	2.337	7.3
4	1190.2	64.32	65.42	65.65	64.50	64.97	101.630	101.410	101.520	2.263	10.2		4	1190.3	691.6	1194	2.369	0.9
3	1193.7	65.13	06.30	60:99	65.16	65.67	101.310	101.350	101.330	2.254	10.6		3	1193.7	693.3	1197.5	2.368	6.1
2	1192.3	66.74	62.79	62.89	65.91	80:99	101.090	101.050	101.070	2.249	10.8		2	1192.3	691.6	1196.7	2.361	6.3
-	1195.8	06:99	66.49	66.59	66.28	2999	101.970	101.270	101.620	2.215	12.1		1	1195.8	696.4	1202.7	2.362	6.3
Sample	Dry Mass	Height 1	Height 2	Height 3	Height 4	Average Height	Diameter 1	Diameter 2	Average Diameter	G _{mb} [A/(F*π*l²/4)]	Air Voids [(Gmm-J)/Gmm]	SATURATED SURFACE DRY METHOD	Sample	Dry Mass	Submerged Mass	SSD Mass	G _{mb} [A/(C-B)]	Air Voids [(G _{mm} -D)/G _{mm}]

50651A M-50 Dundee Cadillac LLC Asphalt 3E1 Coarse 2.52

Project Number:
Location:
Contractor:
Mix:
Gradation:
Gran

						_	1199.8	68.82	60:03	72 69.72	┝	38 69.34	85 102.79	45 101.90	65 102.35	2.103	2 15.5		20	Ĺ	2 695.8	Н	9 2.30	9.7 6
						19	3 1200.	_	60'69 2		H		4 102.85	6 102.45	5 102.65	1 2.112	15.2		19	3 1200.4	5 692	1	2.29	7.9
						18	1197.3	68.85	69.37	69.32	68.79	80'69	102.14	102.36	102.25	2.111	15.2		18	÷	693.5	1216.	2.29	8.0
						17	1206.8	69.63	70.14	22.69	69.33	69.72	102.24	102.13	102.19	2111	15.2		17	1206.8	699.1	1222.4	2.31	7.3
						16	1195.1	90.89	68.12	80'89	67.98	90'89	102.01	102.01	102.01	2.149	13.7		16	1195.1	687.5	1207.1	2.30	9.7
						15	1196.4	67.29	96'.99	67.29	67.13	67.42	101.77	101.90	101.84	2.179	12.5		15	1196.4	989	1203.3	2.31	7.3
						14	1196.6	68.01	67.72	62.89	68.72	60.89	102.24	102.02	102.13	2.145	13.8		14	1196.6	689.4	1210.3	2.30	7.7
						13	1212.4	69.90	96'39	69.63	69.90	69.70	102.20	102.55	102.38	2.113	15.1		13	1212.4	702.4	1228.5	2.30	7.4
						12	1194.8	68.45	68.55	68.39	68.16	68.39	102.43	102.51	102.47	2.119	14.9		12	1194.8	689.1	1210.1	2.29	6.7
						11	1196.2	68.07	68.01	68.28	68.45	68.20	102.28	101.93	102.11	2.142	13.9		£	1196.2	692	1211.2	2.30	7.4
						1	1199.3	96.89	69.34	69.12	68.80	90'69	102.03	102.10	102.07	2.123	14.7		-	1199.3	691.7	1214.8	2.29	6.7
						6	1190	69.19	69.18	69.23	69.85	96'36	102.55	102.60	102.58	2.076	16.6		6	1190	687.4	1206.5	2.29	6.7
						8	1195.2	68.74	68.33	68.31	68.55	68.48	102.13	102.14	102.14	2.130	14.4		8	1195.2	688.7	1209	2.30	7.7
						7	1204.7	69.34	89.89	69.25	69.93	06.30	101.95	101.99	101.97	2.129	14.5		7	1204.7	697.3	1219.6	2.31	7.3
						9	1191.9	69.17	69.14	69.22	69.20	69.18	101.76	101.79	101.78	2.118	14.9		9	1191.9	692.6	1209.9	2.30	7.4
						2	1194.6	69.04	80.69	25.89	68.74	98.89	102.25	102.79	102.52	2.102	15.6		2	1194.6	689	1209.7	2.29	7.8
						4	196.2	69.04	69.02		69.28		-	-	102.52	2.098	15.7		4	196.2	691.6	1210.9	2.30	7.5
						3	1182.8	_	68.49		08.70	09:89	102.05	101.84	101.95	2.112	15.1		3	182.8	H	9	2.31	7.3
															-									7
						2	1194.3	67.16	96'99	67.14	67.58	67.21	101.94	101.81	101.88	2.180	12.4		2	1194.3	982	1203	2.31	7.4
46023A M-21 St. Johns	Michigan Paving & Materials	3E3	Coarse	2.489		1	1196.9	00'89	68.28	86'29	82'29	68.01	102.41	102.83	102.62	2.128	14.5		,	1196.9	686.4	1208.8	2.29	6.7
Project Number: Location:		Mix:		Gran	/OLUMETRIC ANALYSIS	Sample	Dry Mass (g)	Height 1 (mm)	Height 2 (mm)	Height 3 (mm)	Height 4 (mm)	Average Height (mm)	Diameter 1 (mm)	Diameter 2 (mm)	Average Diameter (mm)	G _{mb} [A/(F*π*1 ² /4)]	Air Voids [(G _{mm} -J)/G _{mm}]	SATURATED SURFACE DRY METHOD	Sample	Dry Mass (g)	Submerged Mass (g)	SSD Mass (g)	G _{mb} [A/(C-B)]	Air Voids [(G _{mm} -D)/G _{mm}]
					NOL.		A	В	ပ	Q	ш	ш	ŋ	I	=	٦	¥	SATI		∢	В	ပ	Q	ш

20	12	64.84	64.63	64.68	64.68	64.71	101.88	101.91	101.895	2.276	9.0		20	12	682.6	1204.5	2.301
19	1193.3	64.90	65.81	65.41	62.19	65.33	101.2	101.39	101.295	2.267	9.4		19	1193.3	9.778	1196	2302
18	1203.8	65.13	62.59	96.36	25.59	99:59	101.67	101.46	101.565	2.263	9.5		18	1203.8	684.8	1206.7	2307
17	1187.1	64.92	65.18	65.72	64.92	65.19	101.47	101.73	101.600	2.246	10.2		17	1187.1	673.8	1189.6	2.301
16	1193.8	64.80	64.47	65.75	65.40	65.11	101.55	101.43	101.490	2.267	9.4		16	1193.8	679.1	1197.4	2.303
15	1198	66.21	65.72	64.75	65.38	65.52	101.47	101.55	101.510	2.259	9.7		15	1198	683.7	1201	2.316
14	1201.5	65.22	65.50	65.90	65.62	92.59	101.39	101.37	101.380	2.270	9.2		14	1201.5	685.2	1203.9	2.316
13	1190.7	64.93	64.48	64.53	65.14	64.77	101.28	101.3	101.290	2.281	8.8		13	1190.7	677.1	1194.1	2.303
12	1196.5	65.44	65.24	64.26	64.91	64.96	101.65	101.47	101.560	2.274	9.1		12	1196.5	682.1	1199.6	2.312
11	1192.6	65.21	64.65	64.76	65.27	64.97	101.37	101.37	101.370	2.274	9.1		11	1192.6	678.5	1196.1	2.304
10	1198.6	65.28	64.94	65.45	66.79	65.62	101.35	101.54	101.445	2.260	9.6		10	1198.6	681.3	1202.2	2.301
6	1188.5	64.86	64.47	64.58	65.33	64.81	101.36	101.19	101.275	2.276	9.0		6	1188.5	2.779	1192.3	2.310
8	1198.6	64.79	65.65	19.99	96.49	65.50	101.65	101.79	101.720	2.252	10.0		8	1198.6	089	1200.9	2.301
7	1193	65.20	65.63	64.48	64.38	64.92	101.53	102.32	101.925	2.252	10.0		7	1193	6.879	1196.6	2.304
9	1195.1	69:59	66.12	64.49	65.65	65.49	101.44	101.61	101.525	2.254	6.6		9	1195.1	8.929	1196.3	2.300
2	1194.6	96:39	92.39	64.80	64.41	65.13	101.3	101.94	101.620	2.261	9.6		2	1194.6	6.089	1196.5	2.317
4	1190.3	64.95	64.20	64.45	65.37	64.74	101.76	101.65	101.705	2.263	9.5		4	1190.3	677.1	1192.5	5.309
3	1190.4	62.39	65.30	64.93	64.00	64.91	100.83	101.25	101.040	2.287	8.5		3	1190.4	2.089	1193	2.324
2	1265.2	68.82	68.59	06.79	68.17	68.37	101.2	101.5	101.350	2.294	8.3		2	1265.2	722.1	1267.6	2.319
1	1223.4	66.24	67.42	66.63	65.56	66.46	101.55	101.76	101.655	2.268	9.3		1	1223.4	696.1	1224.8	2.314
Sample	Dry Mass	Height 1	Height 2	Height 3	Height 4	Average Height	Diameter 1	Diameter 2	Average Diameter	$G_{mb}[A(F^*\pi^*l^2/4)]$	Air Voids [(G _{mm} -J)/G _{mm}]	RATED SURFACE DRY METHOD	Sample	Dry Mass	Submerged Mass	SSD Mass	G _{mb} [A/(C-B)]

50650A BL I-96 Howell Rieth-Riley Fine 4E3 2.501

Project Number:
Location:
Contractor:
Mix:
Gradation:

LOCAROTI.	Contractor: Michigan Paving & Materials	Mix: 5E3	_	G _{mm} 2.470	ALYSIS	Sample 1 2 3	1192.2 1209.6 1	Height 1 (mm) 64.49 65.46 64.93	Height 2 (mm) 65.34 65.44 65.46	64.43 66.01	64.41 66.04	Average Height (mm) 64.67 65.74 65.38	Diameter 1 (mm) 101.37 101.23	Diameter 2 (mm) 101.27 101.47 101.31	m) 101.32 10	G _{mb} [A/(F* π*l ² /4)] 2.277 2.273 2.273	Air Voids [(G _{mm} -J)/G _{mm}] 7.7 8.0	SATURATED SURFACE DRY METHOD	Sample 1 2 3	Dry Mass (g) 1192.2 1209.6 1196.8	Submerged Mass (g) 679.3 685.5 677.1	SSD Mass (g) 1194.4 1211.9 1198.8	G _{the} [A(C-B)] 2.31 2.30 2.29	Air Voids I/GDI/G1
						4	196.8 1212.8 11	66.19	67.19	66.81	65.83	66.51	101.30	101.37	101.34	2.261	8.5		4	1212.8	685.3	1215.5	2.29	7.7
						9 9	1199.9 1212.1	66.31 66.06		65.31 66.02		5.80 66.03	101.27 101.29	101.36 101.31	101.32 101.30	2.262 2.278	8.4 7.8		9 9	1193.9 1212.1	673.4 687.1	196.4 1214.6	2.28 2.30	76 70
						7	1194.2	65.74	65.83	64.97	65.13	65.42	101.37	101.32	101.35	2.263	8.4		7	1194.2	673.2	1197.2	2.28	
						8	1197.1	65.82	65.62	H	65.32	65.45	101.35	101.40	101.38	2.266	8.3		8	1197.1	676.5	1200.3	2.29	1.5
						6	1194.2	64.64 6	64.70 6	65.87 6	-	65.27 6	101.29 10	101.33 10	Н	2.270 2	8.1		6	194.2		196.9	2.29	- 40
						10 1	1199.9 118	67.33 66.4	65.13 64.88		66.12 65.9	65.98 65.61	101.37 101.	101.42 101.28	101.40 101.28	2.252 2.250	8.8 8.9		10 1	1199.9 118	676.7 671.8	1202.1 1192.	2.28 2.28	27
						12	189.3 1192.6	18 65.11		00:99		31 65.50		28 101.30	28 101.31	50 2.259	9.8		12	189.3 1192.6	.8 673.3	2.7 1195.6	8 2.28	22
						13		99:28	65.41	L	┝	65.40	Н	101.63	101.50	2.257	9.8		13	_	┝	1196.8	2.29	1 7
						14	1179.3	63.85	64.43	64.81	64.68	64.44	101.43	101.35	101.39	2.267	8.2		14	1179.3	299	1181.8	2.29	1.0
						15	1186	63.98	64.14	65.47	65.44	64.76	101.38	101.39	101.39	2.269	8.2		15	1186	1/9	1187.8	2.29	1.4
						16	1191	64.24	65.45	65.68	64.85	90.29	101.33	101.20	101.27	2.273	8.0		16	1191	673.5	1193.5	2.29	1.0
						17	1198.1	9 09:99	64.70 6	L	┝	98:39	101.16 10	101.35 10	101.26 10	2.259 2	8.5		17	1198.1	9 229	1200.5 17	2.29	10
						18 19	191.1 1195.7	65.88 65.86	65.49 65.65	-		65.57 65.16	101.37 101.34	101.32 101.21	101.35 101.28	2.252 2.278	8.8 7.8		18 19	1191.1 1195.7	671.7 676	1192.6 119	2.29 2.29	7 1
						20		36 65.33	35 65.96			65.29		21 101.33	28 101.39	78 2.266	8.3		- 20	, -	3 675.5	197.8 1197	9 2.29	7.0

34519A M-59 Brighton Ajax Paving 3E10 Coarse 2.503

Project Number: Location: Contractor: Mix: Gradation:

20	1186.7	65.13	65.36	65.33	65.84	65.42	101.42	101.87	101.645	2.236	10.7		20	1186.7	687.4	1193.4	2.35	6.3
19	1196.6	66.43	92.29	65.10	65.23	65.58	101.31	101.71	101.510	2.255	6.6		19	1196.6	2.069	1199.9	2.35	6.1
18	1196.4	82.89	99.89	68.95	86.89	68.82	101.41	101.41	101.410	2.152	14.0		18	1196.4	869	1216.3	2.31	7.8
17	1207	99.02	71.69	71.19	70.84	71.10	101.48	101.79	101.635	2.093	16.4		17	1207	9.907	1230.4	2.30	6.7
16	1195	68.45	06'29	86'.29	68.35	68.17	100.89	101.44	101.165	2.181	12.9		16	1195	2.969	1209.6	2.33	6.9
15	1194	09.69	69.48	80.69	69.07	69.31	101.24	101.47	101.355	2.135	14.7		15	1194	694.7	1210.6	2.31	7.5
14	1192.9	67.12	67.48	67.38	67.13	67.28	101.29	101.48	101.385	2.196	12.3		14	1192.9	689	1206.5	2.31	6.7
13	1189.5	68'59	65.82	64.88	64.98	62'39	102.28	102.01	102.145	2.220	11.3		13	1189.5	687.3	1194.7	2.34	6.3
12	1188.6	68.26	20'89	68.20	68.84	68.34	101.28	101.44	101.360	2.155	13.9		12	1188.6	692.4	1207.9	2.31	6.7
11	1209.2	20.00	70.26	26.69	69.51	69.94	101.22	101.51	101.365	2.143	14.4		11	1209.2	705.2	1230.2	2.30	8.0
10	1198	89.89	69.29	60.69	68.54	08.90	101.26	101.33	101.295	2.158	13.8		10	1198	701.4	1221.2	2.30	6.7
6	1201.6	06'69	08'69	69.69	70.03	98.69	101.18	101.74	101.460	2.128	15.0		6	1201.6	701.4	1219.8	2.32	7.4
8	1203.8	67.81	67.73	67.46	68.20	67.80	101.51	101.43	101.470	2.196	12.3		8	1203.8	696.4	1217.4	2.31	7.7
4	1200.7	62.29	65.03	66.29	26.39	65.65	101.61	101.33	101.470	2.262	9.6		4	1200.7	693.1	1204.6	2.35	6.2
9	1197.1	80.89	68.52	67.81	67.51	86'.29	101.56	101.49	101.525	2.175	13.1		9	1197.1	694.6	1211.2	2.32	7.4
2	1208.9	70.00	98.69	68.89	69.87	69.91	100.86	101.44	101.150	2.152	14.0		2	1208.9	206.3	1231.5	2.30	8.0
4	1198	68.03	68.34	68.04	22.73	68.05	101.49	101.51	101.500	2.176	13.1		4	1198	695.8	1212.2	2.32	7.3
3	1195.8	67.36	67.50	67.67	68.07	67.65	101.38	101.56	101.470	2.186	12.7		3	1195.8	691.6	1210.4	2.30	7.9
2	1194.8	68.03	68.79	67.92	67.62	68.09	101.41	101.36	101.385	2.174	13.2		2	1194.8	691.2	1207.4	2.31	7.5
1	1211.5	70.26	70.43	70.51	96.96	70.29	101.23	101.61	101.420	2.134	14.8		1	1211.5	9.802	1234.8	2.30	8.0
Sample	Dry Mass	Height 1	Height 2	Height 3	Height 4	Average Height	Diameter 1	Diameter 2	Average Diameter	$G_{mb} [A/(F^*\pi^*l^2/4)]$	Air Voids [(G _{mm} -J)/G _{mm}]	URATED SURFACE DRY METHOD	Sample	Dry Mass	Submerged Mass	SSD Mass	G _{mb} [A(C-B)]	Air Voids [(G _{mm} -D)/G _{mm}]
	A	В	၁	Ω	Е	ш	Ŋ	I	E	r	¥	SATUR		⋖	В	ပ	Ω	ш

20	1197.5	64.34	65.52	66.11	64.60	65.14	101.610	101.530	101.570	2.269	9.2		20	1197.5	683.3	1201.1	2.313	
19	1192.2	63.72	65.13	64.11	63.75	64.18	101.240	101.270	101.255	2.307	7.7		19	1192.2	989	1194.5	2.340	I
18	1199.2	65.85	64.89	64.50	64.57	64.95	101.110	101.900	101.505	2.282	8.7		18	1199.2	687.3	1201.9	2.330	I
17	1194.7	64.90	64.09	64.70	65.44	64.78	101.500	101.560	101.530	2.278	8.9		41	1194.8	684.3	1197.5	2.328	
91	1193.8	64.21	64.76	64.32	64.02	64.33	101.440	101.300	101.370	2.299	8.0		91	1193.8	686.2	1196	2.342	
15	1205.4	81.99	64.75	64.24	89'19	96'19	101.260	101.200	101.230	2305	2.7		15	1205.4	9.569	1207.4	2.346	
14	1203	64.19	65.44	96'99	64.29	64.97	101.370	101.590	101.480	5.289	8.4		14	1203	6'689	1205.8	2:332	
13	1208	65.24	64.88	64.68	64.83	64.91	101.280	101.330	101.305	2.309	9.7		13	1208	97.69	1210.7	2.341	
12	1221.4	16.31	29'99	95.46	00'99	98'99	101,360	101.780	101.570	5.289	8.4		12	1221.4	6'669	1223.8	2.331	
11	1191.8	64.26	64.92	19.49	09'79	09'79	101.060	101.330	101.195	2.294	8.2		11	1191.8	684.3	1194.5	2.336	
10	1201.5	63.70	64.20	65.65	64.87	64.61	101.070	101.680	101.375	2.304	7.8		10	1201.5	691.4	1203.2	2.348	
6	1213.1	65.15	65.21	96'39	96.36	65.67	101.870	101.720	101.795	2.270	9.2		6	1213.2	695.5	1216.5	2.329	I
8	1200.9	64.01	64.97	65.91	90'99	64.99	101.270	101.190	101.230	2.296	8.1		8	1200.8	889	1204.1	2.327	I
7	1193.9	63.96	63.82	64.42	65.46	64.42	101.540	101.440	101.490	2.291	8.3		7	1193.9	683.6	1196.5	2.328	I
9	1220.7	66.72	99:99	64.98	65.46	65.71	101.220	101.170	101.195	2.310	9.7		9	1220.5	6'002	1222.4	2.340	ı
2	1191.5	65.19	64.94	64.78	65.11	65.01	101.410	101.670	101.540	2.264	9.4		2	1191.5	680.2	1195.7	2.311	ı
4	1199.9	65.71	65.38	65.32	65.80	65.55	101.420	101.180	101.300	2.271	9.1		4	1199.9	87.8	1205.2	2.319	ı
3	1207.2	65.36	64.21	64.26	65.35	64.80	101.180	101.230	101.205	2.316	7.3		3	1207.3	694.5	1209.3	2.345	ı
2	1213.2	65.51	64.39	64.61	65.27	64.95	101.720	101.790	101.755	2.297	8.1		2	1213.1	696.3	1215.6	2.336	ĺ
1	1197.6	64.94	64.60	64.75	64.87	64.79	102.300	102.270	102.285	2.250	10.0		1	1197.6	686.3	1200.9	2.327	ĺ
Sample	Dry Mass	Height 1	Height 2	Height 3	Height 4	Average Height	Diameter 1	Diameter 2	Average Diameter	G _{mb} [A/(F*π*1 ² /4)]	Air Voids [(G _{mm} -J)/G _{mm}]	URATED SURFACE DRY METHOD	Sample	Dry Mass	Submerged Mass	SSD Mass	G _{mb} [A/(C-B)]	

74784A
1-196 Grand
Rapids
Michigan
Paving &
Materials
5E10
Coarse
2.499

Contractor:
Mix:
Gradation:

Project Number: Location:

Project Number: 51472A
Location: 1-75 Clarkston
Contractor: Ace Asphalt
Mix: 4E30
Gradation: Coarse
Gnm 2.487

20	1199.2	66.84	65.10	65.15	66.33	98.59	101.38	101.29	101.335	2.258	9.2
19	1205	65.49	99.50	66.53	65.83	60.99	101.31	101.4	101.355	2.260	9.1
18	1197.4	99:99	65.16	26'99	28.99	91.99	101.48	101.14	101.310	2.245	9.7
- 11	1223.6	67.42	86'99	67.28	68.49	67.54	101.15	101.26	101.205	2.252	9.4
16	1196.1	65.83	64.76	65.52	66.62	89'59	101.2	101.31	101.255	2.261	9.1
15	1200.9	64.21	64.40	65.62	65.41	64.91	101.13	101.42	101.275	2.297	7.7
14	1.197.1	64.55	64.62	65.47	65.75	65.10	101.25	101.3	101.275	2.283	8.2
13	1194.3	65.21	86'39	86.58	66.13	86:39	101.01	102.06	101.535	2.236	10.1
12	1203.5	67.20	67.10	65.73	65.58	66.40	101.75	101.78	101.765	2.228	10.4
7	1192.3	65.52	64.78	60'99	60'99	65.62	101.68	101.71	101.695	2.237	10.1
10	1193.6	65.57	63.81	64.11	65.27	64.69	101.22	101.2	101.210	2.293	7.8
6	1196.2	64.66	65.37	65.28	62.59	65.23	101.33	101.4	101.365	2.273	9.8
∞	1204	66.47	67.15	66.35	65.73	66.43	101.22	101.35	101.285	2.250	9.5
7	1233	69.01	69.10	68.23	68.58	68.73	101.44	101.59	101.515	2.216	10.9
9	1201	66.64	65.81	96'99	65.75	66.29	101.34	101.34	101.340	2.246	9.7
2	1191.9	65.47	65.16	65.21	92.39	65.30	101.37	101.39	101.380	2.261	9.1
4	1197	66.20	65.18	65.58	66.12	22.29	101.21	101.23	101.220	2.262	9.1
က	1191.2	62.09	65.93	65.85	64.90	65.44	101.32	101.44	101.380	2.255	9.3
2	1191.8	86.58	06.30	28.99	66.54	66.45	101.67	101.68	101.675	2.209	11.2
1	1233.9	29'29	67.22	98'29	67.44	67.55	101.19	101.88	101.535	2.256	9.3
Sample	Dry Mass	Height 1	Height 2	Height 3	Height 4	Average Height	Diameter 1	Diameter 2	Average Diameter	G_{mb} [A/($F^*\pi^*l^2/4$)]	Air Voids [(G _{mm} -J)/G _{mm}]

Sample	-	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
A Dry Mass	1233.9	1191.8	1191.2	1197	1191.9	1201	1233	1204	1196.2	1193.6	1192.3	1203.5	1194.3	1197.1	1200.9	1196.1	1223.6	1197.4	1205	1199.2
B Submerged Mass	705.9	678.2	681.1	684.6	681.3	685.3	9.907	6.069	685.1	683.2	678.5	686.3	8.089	989	8.989	684.6	695.4	8.629	687.3	683.8
C SSD Mass	1240.8	1199.2	1193.8	1202.8	1195.7	1209.5	1243.6	1215	1201	1196.1	1197.4	1209.8	1200.2	1201.5	1204.1	1201.7	1229.3	1202	1210	1202.2
D G _{mb} [A/(C-B)]	2.307	2.288	2.323	2.310	2.317	2.291	2.296	2.297	2.319	2.327	2.298	2.299	2.299	2.318	2.321	2.313	2.292	2.293	2.305	2.313
E Air Voids [(G _{mm} -D)/G _{mm}]	7.2	8.0	9.9	7.1	8.9	7.9	7.7	9.7	8.9	6.4	9.7	9.7	7.5	8.9	6.7	7.0	7.8	7.8	7.3	7.0

Phase I – 100mm Superpave Specimens

_	_		_	\sim	<u>u</u>	ľ		ľ		•	~	P					~	
20	1083.5	62.90	63.10	63.10	63.02	63.03	99.630	99.370	99.500	2.211	12.3		20	1083.5	631.6	1090	2.364	6.2
19	1089.5	63.04	63.14	63.31	63.30	63.20	99.680	99.750	99.715	2.208	12.4		19	1089.5	634.3	1098.4	2.348	6.8
18	1086.3	63.08	90.69	63.17	63.19	63.13	99.570	99.830	99.700	2.204	12.5		18	1086.3	635.2	1094.9	2.363	6.2
17	1086.4	63.01	63.31	63.22	63.19	63.18	99.950	99.580	39.765	2.200	12.7		17	1086.4	6329	1094.9	2.367	6.1
16	1089.5	63.06	63.12	63.21	63.14	63.13	99.510	99.900	99.705	2.210	12.3		16	1089.5	634.8	1099.2	2.346	6.9
15	1084.1	63.13	63.13	63.17	62.97	63.10	99.420	002'66	095'66	2.207	12.4		15	1084.1	633.2	1091.8	2.364	6.2
14	1089	62.88	62.95	62.95	62.92	62.93	99.400	99.640	99.520	2.225	11.7		14	1089	97.69	1098.1	2.365	6.2
13	1083.6	62.94	63.03	80.69	63.19	90.69	99.280	99.250	99.265	2.220	11.9		13	1083.6	632.1	1092.2	2.355	6.5
12	1084.9	63.10	63.19	90'89	63.12	63.12	04.770	99.740	99.755	2.199	12.7		12	1084.9	632.6	1093.3	2.355	9.9
11	1082.4	63.16	63.08	63.04	62.93	63.05	99.570	009'66	99.585	2.204	12.5		11	1082.4	629.7	1089.1	2.356	9.5
10	1088.1	26.29	PS 29	62.93	24.89	20'89	04.266	009'66	989'66	2.211	123		10	1088.1	636.2	1094.8	2:367	6.1
9	1087	62.95	62.81	62.87	62.95	62.90	99.260	99.220	99.240	2.234	11.3		6	1087	634.9	1094.3	2.366	6.1
8	1091.7	62.95	63.06	63.27	63.12	63.10	99.800	100.070	99.935	2.206	12.5		8	1091.7	637.6	1099.7	2.362	6.3
7	1089.5	62.95	63.04	62.94	63.13	63.02	99.190	99.810	99.500	2.224	11.8		7	1089.5	636.4	1096.1	2.370	0.9
9	1085.7	63.01	62.97	63.02	63.16	63.04	99.560	99.610	99.585	2.211	12.3		9	1085.7	632.2	1093.5	2.354	9.9
5	1086.8	62.84	63.05	62.98	62.81	62.92	99.180	99.740	99.460	2.223	11.8		2	1086.8	634.8	1094.9	2.362	6.3
4	1084.9	63.47	62.90	63.01	63.53	63.23	99.540	098'860	99.700	2.198	12.8		4	1084.9	633.3	1092	2.365	6.1
3	1085.1	62.77	63.00	63.07	63.31	63.04	98.950	009'66	99.275	2.224	11.8		3	1085.1	632.9	1091.4	2.367	6.1
2	1085.7	62.93	62.95	63.04	63.03	65.39	99.590	98.970	99.280	2.227	11.6		2	1085.7	633.4	1091.9	2.368	0.9
1	1084.9	63.47	62.90	63.01	63.53	63.23	99.540	99.860	99.700	2.198	12.8		Ļ	1084.9	633.3	1092	2.365	6.1
Sample	Dry Mass	Height 1	Height 2	Height 3	Height 4	Average Height	Diameter 1	Diameter 2	Average Diameter	G _{mb} [A/(F*π*l ² /4)]	Air Voids [(G _{mm} -J)/G _{mm}]	SATURATED SURFACE DRY METHOD	Sample	Dry Mass	Submerged Mass	SSD Mass	G _{mb} [A/(C-B)]	Air Voids [(G _{mm} -D)/G _{mm}]

50651A M-50 Dundee Cadillac LLC Asphalt 3E1 Coarse 2.52

Project Number:
Location:
Contractor:
Mix:
Gradation:
Gran

			63.02	63.03	62.96	63.10	63.03	100.08	100.07	100.08	2.161	13.2		20	1071.	614.4	1077.6	2.31	7.1
	19	1090	63.07	62.94	63.12	63.00	63.03	100.06	100.04	100.05	2.200	11.6		19	1090	630.7	1097.8	2.33	6.2
	18	1079	63.05	62.85	62.88	62.85	62.91	100.21	100.38	100.30	2.171	12.8		18	1079	618.9	1084.5	2.32	6.9
	11	1080.5	96'79	63.03	88'79	63.01	26.29	100.14	10015	100.15	2.178	12.5		- 11	1080.5	67179	1087.3	2.32	6.7
	16	1079.2	63.03	65.99	96'79	63.04	63.01	100.17	100.26	100.22	2.171	12.8		91	1079.2	677.9	1085.4	2.33	6.3
	15	1085.3	90'89	96'79	63.26	63.07	63.09	100.11	100.30	100.21	2.181	12.4		15	1085.3	2879	1093.1	2.34	6.1
	14	1085.3	63.10	63.15	63.11	63.05	63.10	100.22	100.15	100.19	2.182	12.3		14	1085.3	628.4	1092.2	2.34	0.9
	13	1084.5	63.02	80.69	63.02	63.12	90'89	100.14	100.07	100.11	2.185	12.2		13	1084.5	627.6	1091.5	2.34	6.1
	12	1089.7	63.08	63.04	90'89	65.39	63.04	100.22	100.08	100.15	2.194	11.8		12	1089.7	627.8	1094.7	2.33	6.2
	#	1094.7	63.08	63.03	63.09	63.13	63.08	100.18	100.11	100.15	2.203	11.5		11	1094.7	631.1	1100.2	2.33	6.2
	10	1087.6	63.11	63.19	63.11	63.16	63.14	100.34	100.15	100.25	2.182	12.3		10	1087.6	623.3	1094.1	2.31	7.2
	6	1083.1	62.86	62.97	80:69	63.18	63.02	100.24	100.15	100.20	2.180	12.4		6	1083.1	624.2	1089.7	2.33	6.5
	8	1088.8	62.65	63.03	80:69	63.03	62.95	100.15	100.28	100.22	2.193	11.9		8	1088.8	9.629	1095.5	2.34	6.1
	7	1081.6	63.14	65.99	63.04	63.24	63.10	100.77	100.41	100.59	2.157	13.3		7	1081.6	621.4	1089.4	2.31	7.1
	9	1077.8	63.31	63.20	63.39	63.25	63.29	100.72	100.09	100.41	2.151	13.6		9	1077.8	621.3	1085.3	2.32	6.7
	2	1075.4	65.39	65.39	62.90	62.82	62.93	100.17	100.14	100.16	2.169	12.8		2	1075.4	619.9	1083.3	2.32	8.9
	4	1092.6	63.02	62.98	62.94	62.79	62.93	100.19	100.10	100.15	2.204	11.4		4	1092.6	631.6	1098.4	2.34	0:9
	3	1084.7	63.12	63.15	63.14	63.16	63.14	100.57	100.62	100.60	2.161	13.2		3	1084.7	627.7	1092.1	2.34	6.2
	2	1084.9	63.07	63.12	63.05	62.85	63.02	100.20	100.11	100.16	2.185	12.2		2	1084.9	625.1	1091.6	2.33	9.9
46023A M-21 St. Johns Michigan Paving Materials 3 Materials 2.489 2.489	1	1081.9	62.98	62.90	63.13	63.07	63.02	100.05	100.26	100.16	2.179	12.5		1	1081.9	623.2	1089.7	2.32	6.8
Project Number: Location: Contractor: Mix: Gradation: G.mm OLUMETRIC ANALYSIS	Sample	Dry Mass (g)	Height 1 (mm)	Height 2 (mm)	Height 3 (mm)	Height 4 (mm)	Average Height (mm)	Diameter 1 (mm)	Diameter 2 (mm)	Average Diameter (mm)	$G_{mb}[A/(F^*\pi^*l^2/4)]$	Air Voids [(G _{mm} -J)/G _{mm}]	SATURATED SURFACE DRY METHOD	Sample	Dry Mass (g)	Submerged Mass (g)	SSD Mass (g)	G _{mb} [A/(C-B)]	Air Voids [(G _{mm} -D)/G _{mm}]

 Project Number:
 50650A

 Location:
 BL I-96 Howell

 Contractor:
 Rieth-Riley

 Mix:
 Fine

 Gradation:
 4E3

 Gmm
 2:501

20	1139.6	63.26	63.23	63.29	63.28	63.27	99.17	98.32	98.745	2.352	6.0	Ī	20	1139.6	623.9	1142.2	2.334	6.7
19	1136 1	63.32	63.27	63.12	63.32	63.26	99.9744	99.8474	99.911	2.291	8.4		19	1136 1	649.8	1138.4	2.325	7.0
18	1139.2	63.27	63.30	63.27	63.35	63.30	8474	8982	873	2.297	8.1		18	1139.2	625.9	1140.9 1	2.334	2.9
17	140.1	63.35 6	63.42 6	63.32 6	63.27 6	63.34 6	99.8474 99.	99.8982 99.	99.873 99.	2.298 2	8.1		17	1140.1	655.2 6	1141.8 1	2.343 2	6.3
16	144 11	63.22 6	63.25 6	63.32 6	63.25 6	63.26 6	.8474 99	.8728 99.	980	2.309 2.	1.7		16	1144 11	659.4 6	146.2 11	2.350 2.	0.0
. 12	132.5	25	63.35 63	32	42	63.34 63	.822 99.	.822 99.	99.822 99.	2.285 2.	7.8		. 12	1132.5 1	648.5 66	135.4 11.	2.326 2.	7.0
	1	42 63.		30 63	.40 63.	Н	.8728 99.	.8474 99.	-		7.6 8		14 1	Н	L	1	.350 2.3	
14	7 1147	10 63.42	63.25	37 63.30	63	63.34	8474 99.8	8728 99.8	99.860	38 2.312				7 1147	.2 660.7	.9 1148.	2	9 9:0
13	1 1147	5 63.40	7 63.45	9 63.37	2 63.75	3 63.49	66	66	99	5 2.308	7.7		13	1 1147	3 658.	8 1148.	1 2.339	6.5
12	1145.	63.55	62.87	62.88	63.22	63.13	4 99.8474	3 99.9236	988.886	2.315	7.4		12	1145.	659.8	1146.	2.351	0.9
11	1142.2	62.84	63.14	63.25	62.89	63.03	99.9744	99.9236	99.949	2.310	7.7		11	1142.2	626.9	1143.8	2.346	6.2
10	1141.2	63.09	63.42	62.71	62.74	65.39	99.7458	99.9236	99.835	2.314	7.5		10	1141.2	657.5	1143.9	2.346	6.2
6	1145	62.79	20.69	82.69	63.12	63.19	99.8728	99.9236	868.66	2.312	9.7		6	1145	659.5	1147	2.349	6.1
8	1142.9	63.07	63.37	62.92	65.99	63.09	99.8982	99.9236	99.911	2.311	9.7		8	1142.9	656.7	1144.1	2.345	6.2
7	1137.2	63.40	63.35	63.20	63.20	63.29	99.949	99.8982	99.924	2.291	8.4		7	1137.2	655.2	1139.5	2.348	6.1
9	1144.6	63.32	63.02	63.04	65.39	63.09	99.9236	99.949	98.936	2.313	7.5		9	1144.6	659.3	1146	2.352	0.9
2	1141.2	63.21	63.27	63.33	63.21	63.26	99.75	99.74	99.745	2.309	7.7		2	1141.2	655.4	1143.2	2.339	6.5
4	1141	63.27	63.09	65.39	63.07	63.11	9699'66	99.822	99.746	2.314	7.5		4	1141	655.4	1142.6	2.342	6.4
3	1145.8	63.20	63.02	65.99	63.12	63.08	99.7712	99.8474	608.66	2.321	7.2		3	1145.8	629	1147.3	2.347	6.2
2	1142	96.29	63.29	63.31	63.33	63.22	80.66	68.66	99.485	2.324	7.1		2	1142	655.5	1144	2.338	6.5
1	1143.6	63.04	63.07	62.81	62.81	62.93	99.7204	99.695	802.66	2.327	6.9		1	1143.6	657.4	1145.7	2.342	6.4
	11	ස	ස	62	62	62	. 66	99.	- 38	23	9		L	11	65	117	23	9
Sample	Dry Mass	Height 1	Height 2	Height 3	Height 4	Average Height	Diameter 1	Diameter 2	Average Diameter	G _{mb} [A/(F*π*l²/4)]	Air Voids [(G _{mm} -J)/G _{mm}]	SATURATED SURFACE DRY METHOD	Sample	Dry Mass	Submerged Mass	SSD Mass	G _{mb} [A/(C-B)]	Air Voids [(G _{mm} -D)/G _{mm}]
	A	В	၁	D	ш	Ь	9	I	E	٦	¥	SATURA.	L	A	В	ပ	٥	Ц

MACIONESSA					Gmm VOLUMETRIC ANALYSIS		A	В	O	O	Э	٠	9	Ι	Ä	٦	Α	SATURATED (A	В	O	О	Α
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 6.3.5 6.3.5 6.3.5 6.2.3	Project Number: Location:	Contractor:	Mix:	Gradation:	G _{mm} ANALYSIS	Sample	Dry Mass (g)	Height 1 (mm)	Height 2 (mm)	Height 3 (mm)	Height 4 (mm)	4verage Height (mm)	Diameter 1 (mm)	Diameter 2 (mm)	verage Diameter (mm)	G _{mb} [A/(F* π*1 ² /4)]	ir Voids [(G _{mm} -J)/G _{mm}]	SURFACE DRY METHOD	Sample	Dry Mass (g)	Submerged Mass (g)	SSD Mass (g)	G _{mb} [A/(C-B)]	Air Voids I/GDI/G1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 6.3.5 6.3.5 6.3.5 6.2.3	48612A M-21 Owosso	Michigan Paving & Materials	553	FINE	2.470	-	1120.2	63.25	63.25	63.25	65.39	63.18	99.70	99.93	99.82	2.266	8.3		,	1120.2	929	1121.4	2.31	99
178.69 178.64 1128.69 178.44 1128.69 1128.44 1128.64						2	1124.5	63.35	63.67	63.23	63.28	63.38	98.91	99.43	99.17	2.297	7.0		2	1124.5	640	1126.8	2.31	6.5
5 6 7 8 9 10 11 12 13 14 15 16 17 65.50 65.25 65.29 65.29 65.30 65.30 65.31 65.29 65.31 65.29 65.31 65.29 65.31 65.29 65.32 65.32 65.39 65.30 65.39 65.30 65.39 65.30 65.39 65.30 65.39 65.30 65.39 65.39 65.30 65.39 65.39 65.31 62.39 65.30 65.32 65.39 65.30 65.39 65.30 65.39 65.39 65.30 65.39 65.39 65.30 65.39 65.39 65.30 65.39 65.30 6						3	1120.1	63.25	63.23	63.28	63.32	63.27	96'66	36'66	96'66	2.256	8.7		3	1120.1	636.5	1122.5	2.30	6.7
6 7 8 9 10 11 12 13 14 15 16 17 62.25 62.25 62.25 62.25 62.25 62.25 62.25 66.25 <						4	1126.9	63.39	63.30	63.24	63.27	63.30	99.17	99.41	99.29	2.299	6.9		4	1126.9	642.8	1129.1	2.32	6.3
1126.9 1128.4 1127.8 112.15 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1128.4 1128.8 1						5	1126.5	63.50	63.75	63.50	63.25	63.50	99.80	68.66	99.82	2.266	8.3		2	1126.5	640.9	1128.9	2.31	6.5
188 9 10 11 12 13 14 15 16 17 17 1884 11284						9	1124.4	63.25	63.50	65.39	63.25	63.25	99.94	39.82	88.66	2.269	8.1		9	Н	640.1	1126.4	2.31	6.4
10						7	Ŀ	H			H	H	Н	Н	Н		9.7				H		2.31	63
10						H	⊦	_	_	H	H	H	H	H	Н				Т	Н	Н	Н		L
11						H	Ė	-			H		H	Н	Н				Ш	Ĺ	_			1 4
12 13 14 15 16 17 17 17 17 17 17 17						-	L				H	H	H	Н	Н					L		١.		8 69
13						-		H			-				Н					Н				62 67
14 15 16 17 172.88 172.84 172.86 172.89 172.89 172.84 172.89						H	┡	_	_	H	H	Н	Н	Н	Н					Н	-	H		7 63
15 16 17 1784 17284 17284 17284 17289 17289 17299 183.29 183.29 183.29 183.29 183.29 183.29 183.29 183.29 183.29 183.29 183.29 183.29 183.29 183.29 183.29 183.29 183.29 183.29 17.7 7.4 7.7 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2						-	H	-			H	H	H	H	Н					H	_			9
16						-	L				H	H	H	H	Н						-	Н		9
17 1177 62.39 62.39 62.29 63.25 63.12 63.12 63.12 63.12 63.12 64.15 7.7 7.7 1126.3 1126.3 126.3						H	L								Н		7.4		16			Ĺ		6.5
						L	L	H			H	H	H	Н	Н		7.7				H	1	2:32	63
						18	1129.6	65.39	63.25	H	H	H	H	H	Н	2.280	7.7		18	1129.6	643.6	_	2:32	6.1
11286 6225 6325 6328 6328 6328 6312 6312 6312 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6						_	Ŀ	65.39	63.25	63.25	6573	63.12	99.90	99.85	88.66	2.282	9.7		19	Н	643.2	1129.9	2:32	8

34519A	M-59 Brighton	Ajax Paving 3F10	Coarse	2.503
Project Number:	Location:	Contractor:	Gradation:	G _{mm}

. 960	63.30	63.40	63.71	63.46	63.47	100.18	100.09	100.135	2.194	12.3		20	1.096.7	639.2	1105.8	2.35	6.1
1099.1	63.44	63.19	63.36	63.15	63.29	99.9	99.93	99.915 10	2.215	11.5		19	1099.1	989	1104.5	2.35	6.3
Н	Н	H	Н	2	Н			710		L		18	Н		Н		7.8
1	90	15	Н	12	Н	49 96	_	H		H			1	-			6.2
È	89	H	H		Н							_	H		1		
Ĺ	63	H	Н	H	Н	-	H		_			16	Ĺ	-	,	_	6.3
1098.	H	63.26	63.3	63.3	63.50	100.0	96.96	Ė				15	1098.		1104.	2.35	0.9
1096.3	63.35	63.30	63.31	63.29	63.31	2.66	6.66	99.800	2.214	11.6		14	1096.3	637.2	1103.7	2.35	6.1
1084.1	63.23	63.05	63.27	63.22	63.19	99.35	99.72	99.535	2.205	11.9		13	1084.1	626.4	1090.6	2.34	2.9
1085.6	63.25	65.89	63.20	63.13	63.12	99.66	99.64	99.650	2.205	11.9		12	1085.6	629.6	1093.5	2.34	6.5
1088.7	63.08	63.13	63.09	90.69	63.09	99.56	99.51	99.535	2.218	11.4		11	1088.7	634.5	1097.6	2.35	6.1
1091.5	63.15	63.10	63.33	90.89	63.16	99.02	99.53	99.275	2.233	10.8		10	1091.5	634.8	1099.5	2.35	6.2
1084.5	63.10	63.05	63.10	63.22	63.12	99.56	99.71	39.635	2.204	12.0		6	1084.5	630.4	1091.9	2.35	6.1
Н	Н	Н	33.32	_	Н	_	96.66	-		12.1		8	Н	333.7	Н	2.35	6.3
- 2	22	H	H	15	19	53	25	<u>`</u>		1.7		7	2		Н	2.33	7.0
Ĺ		Н	Н	H		_	-	025				9	Ĺ	L	Ĺ		9.9
.8	Н	H	Н	-	Н	-	-	100				_	. 8		4	_	
Ė	H	H	Н		Н	_	_	Ŀ				2			Ĺ		6.1
Н	Н	⊢	Н	H	Н	-	-	ŀ	_	H		4	1101	-	Н	_	0.9
Н	63.64	63.44	63.25	63.41	63.44	99.66	99.94	H	2.214	11.5		3	1098.8	637.2	Ĺ	2.35	6.2
1096.6	63.54	63.24	63.17	63.28	63.31	99.93	99.2	99.565	2.22	11.1		2	1096.6	636.4	1103.3	2.35	6.2
1082.7	63.47	63.39	63.37	63.29	63.38	9.66	99.87	99.735	2.187	12.6		-	1082.7	629.7	1090.6	2.35	6.1
Dry Mass	Height 1	Height 2	Height 3	Height 4	Average Height	Diameter 1	Diameter 2	Average Diameter	G _{mb} [A/(F*π*l²/4)]	Air Voids [(G _{mm} -J)/G _{mm}]	RATED SURFACE DRY METHOD	Sample	Dry Mass	Submerged Mass	SSD Mass	G _{mb} [A(C-B)]	Air Voids [(G _{mm} -D)/G _{mm}]
	1082.7 1086.6 1098.8 1101.8 1101.8 1103.9 1083.2 1094.6 1084.5 1091.5 1081.5 1081.6 1084.1 1086.1 1086.5 1083 1086.1 1076.8	1082.7 1086.6 1098.8 1101.8 1091.8 1103.9 1083.2 1084.6 1094.5 1094.5 1089.7 1085.6 1084.7 1086.5 1094.5 1084.7 1086.8 1 1094.8 1089.7 1089.7 1089.7 1089.8 1099.8 1089.7 1099.8 1089.7 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8 1099.8	Dy Mass 1082,7 1096.6 1098.8 1101.8 1091.8 1103.9 1083.2 1094.6 1084.5 1091.5 1085.6 1084.1 1086.3 1098.1 1086.1 1098.3 1086.1 1 1076.8 1 1098.3 1098.8 1109.8 1 1098.3 1098.8 1109.8 1 1098.3 1098.8 1 1098.8 1 1098.8 1 1098.8 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1098.9 1 1	Dry Mass 1082.7 1086.6 1098 1101.8 1103.1 1081.8 1103.2 1084.6 1084.5 1094.5 1089.7 1085.6 1084.1 1085.5 1085.7 1085.6 108.7 1085.7 1085.8 1085.7 1085.8 1085.7 1085.8 1085.7 1085.8 1085.7 1085.8 1085.7 1085.8 1085.7 1085.8 1085.7 1085.8 1085.7 1085.8 1085.8 1085.7 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 1085.8 108	Dy Mass 1082.7 1086.6 1098.8 1101.8 1091.8 1103.9 1083.2 1094.6 1094.5 1094.5 1095.6 1086.8 1086.1 1096.1 1096.5 1083 1086.1 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 1076.8 107	Dy Mass 1082.7 1086.6 1098.8 1101.8 1091.8 1103.9 1083.2 1094.6 1094.5 1094.5 1095.6 1086.1 1086.1 1096.1 1096.5 1083 1085.1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076	Dy Mass 1082.7 1086 11018 11018 11019 1103.9 1103.2 10946 10945 10945 10945 10986 11064 11084 10845 1085 1086 1 1076 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1 10768 1	Dry Mass 1082.7 108.6 1998 1101.8 1103.1 1031.8 1103.2 1094.6 1004.5 1094.5 1094.5 1086.7 1086.6 1084.1 1086.5 1083 1086.1 1076.8 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1	Dry Mass 1082.7 108.6 109.8 1101.8 1091.8 1103.9 1083.2 1094.6 1094.5 1094.5 1094.5 1095.6 1084.1 1086.5 1094.1 1086.5 1098.5 1098.5 1085.1 1085.1 1076.8 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 10	Dy Mass 1082.7 108.6 109.8 1101.8 1091.8 1103.9 1083.2 1094.6 1094.5 1094.5 1095.6 1084.1 1086.5 1094.1 1086.5 1098.5 1098.5 1085.1 1076.8 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8 1 1076.8	Dy Mass 1082.7 1086 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 11018 1101	Dy Mass 1082.7 108.6 109.8 1101.8 1091.8 1103.9 1083.2 1094.6 1094.5 1094.7 1086.5 1084.7 1086.5 1084.7 1086.5 1084.7 1086.5 1084.7 1086.5 1084.7 1086.5 1084.7 1086.5 1084.7 1086.5 1084.7 1086.5 1084.7 1086.5 1084.7 1086.5 1084.7 1086.7 1086.7 1086.7 1086.5 1084.7 1086.7 1084.7 1086.7 1084.7 1086.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 1084.7 108	1082.7 1086.6 1086.8 1101.8 1101.9 1103.9 1103.2 1034.6 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1094.5 1	1002.7 1006.6 1006.8 1101.8 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1	1002.7 1006.6 1006.8 1101.8 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1101.9 1	1082.7 1086.6 1098.8 1101.8 1109.9 1103.9 1084.5 1094.5 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6 1094.6<	1082.7 1086.6 1098.8 1101.8 1109.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9 1103.9<

20	1133.4	63.31	63.35	63.31	63.31	63.32	99.410	99.760	99.585	2.298	8.0		20	1133.4	654.5	1138.4	2.342
19	1129.3	63.80	63.54	63.63	63.60	63.64	99.430	99.580	99.505	2.282	8.7		19	1129.3	651.3	1134.1	2.339
18	1128.2	63.56	63.46	63.42	63.43	63.47	99.460	99.330	99.395	2.291	8.3		18	1128.2	652.2	1133.7	2.343
17	1133.2	60'69	63.14	93.35	08'89	63.22	868'66	99.949	99.924	2.286	8.5		41	1133.2	654.4	1137.3	2.347
91	1135.1	93.35	60'89	63.17	08'89	63.23	99.924	868'66	116'66	2.290	8.4		91	1135.1	9749	1138.1	2.348
15	1126.7	63.34	63.25	63.41	63.43	98'89	99.520	99.550	96.535	2.285	8.5		15	1126.7	6'6#9	1132.2	2.336
14	1.131.1	63.48	63.38	63.47	63.53	63.47	005'66	99.790	99.645	2.285	8.5		14	1.131.1	653.4	1135.2	2.348
13	1130.7	63.30	63.20	63.22	63.35	63.27	99.974	99.949	396'66	2.277	8.9		13	1130.7	8:159	1134.2	2.344
12	1129.4	12'89	63.51	19'89	09.50	83.58	069'66	99.700	969'66	2.275	8.9		12	1129.4	2'159	1134.5	5.339
11	1129.3	63.35	63.45	63.22	63.27	63.32	865'66	99.720	29.66	2.286	8.5		11	1129.3	6.039	1132.3	2.343
10	1135.2	63.35	63.50	63.32	63.17	63.34	99.873	99.644	99.759	2.293	8.2		10	1135.2	92229	1138.7	2.350
6	1130.9	63.12	63.30	63.32	63.09	63.21	99.898	99.898	868'66	2.283	8.7		6	1130.9	653.2	1136.2	2.341
8	1123.1	63.71	63.39	63.53	63.61	63.56	99.450	99.780	99.615	2.267	9.3		8	1123.1	646.1	1128.2	2.330
7	1132.8	63.42	63.09	63.20	63.37	63.27	99.949	99.974	99.962	2.281	8.7		7	1132.8	653.3	1136.8	2.343
9	1131.3	63.07	63.45	63.50	63.45	63.37	99.924	99.847	988'66	2.278	8.8		9	1131.3	651.1	1135	2.338
5	1127	63.28	63.43	63.38	63.40	63.37	99.700	99.570	99.635	2.281	8.7		2	1127	648.4	1131.4	2.333
4	1130	63.44	63.42	63.43	63.42	63.43	99.950	99.720	99.835	2.276	8.9		4	1130	652.4	1133.5	2.349
3	1130.1	63.14	63.30	63.53	63.47	63.36	99.924	99.949	99.937	2.274	9.0		3	1130.1	648.4	1131.8	2.338
2	1126.6	63.36	63.47	63.30	63.34	63.37	99.940	99.950	99.942	2.266	9.3		2	1126.6	646.9	1130.3	2.345
1	1125.5	63.37	63.30	63.17	63.27	63.28	797.66	99.873	99.835	2.272	9.1		1	1125.5	651	1130.6	2.347
Sample	Dry Mass	Height 1	Height 2	Height 3	Height 4	Average Height	Diameter 1	Diameter 2	Average Diameter	G _{mb} [A/(F* π*1 ² /4)]	Air Voids [(G _{mm} -J)/G _{mm}]	JRATED SURFACE DRY METHOD	Sample	Dry Mass	Submerged Mass	SSD Mass	G _{mb} [A/(C-B)]

74784A I-196 Grand Rapids Michigan Paving & Materials 5E10 Coarse 2.499

Contractor:
Mix:
Gradation:
Grm

Project Number: Location:

Sample	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	1
Dry Mass	1112.5	1112.6	1112.3	1110.5	1107.1	1113.3	1110.8	1111	1113.9	1111.4	1115.6	1099.5	1117.8	1117.4	1119.2	1118.6	1114	1113.4	111
Height 1	63.19	63.59	63.53	63.42	63.17	63.55	63.35	63.13	63.22	63.30	63.29	63.28	63.57	63.30	63.31	63.26	63.52	63.45	63.
Height 2	63.38	63.34	63.38	63.30	63.18	63.34	63.19	63.16	63.30	63.32	63.26	63.24	63.50	63.31	63.29	63.28	63.34	63.29	63.
Height 3	63.42	63.34	63.37	63.28	63.28	08'89	63.22	63.19	63.29	63.40	08.89	63.31	63.76	63.27	63.22	63.27	63.20	63.21	63.
Height 4	03.50	63.38	63.39	63.27	63.20	63.24	63.28	63.18	63.31	63.38	63.22	63.21	63.39	63.27	63.41	63.42	63.22	63.19	63.
Average Height	63.37	63.41	63.42	63.32	63.21	98'89	63.26	63.17	63.28	63.35	63.27	63.26	63.56	63.29	63.31	63.31	63.32	63.29	63.
Diameter 1	6.66	99.91	99.77	26.95	99.83	68'66	99.61	99.83	99.82	99.92	6'66	99.26	99.93	98.86	28.82	99.84	99.82	99.85	99.
Diameter 2	83'66	96.66	99.87	28.86	99.64	99.81	99.92	98.86	29.66	99.82	98'66	26.6	82.66	99.66	26.77	98.86	99.83	99.72	99.
Average Diameter	99.865	99.930	99.820	99.920	99.735	098'66	99.780	99.845	092'66	99.870	088'66	99.630	99.822	99.760	99.820	99.850	99.825	99.785	99.
$G_{mb} [A/(F^*\pi^*l^2/4)]$	2.241	2.237	2.241	2.237	2.242	2.244	2.246	2.246	2.252	2.240	2.251	2.229	2.246	2.259	2.259	2.256	2.248	2.250	2.2
Air Voids [(G _{mm} -J)/G _{mm}]	6.6	10.0	6.6	10.1	6.6	8.6	9.7	9.7	9.4	6.6	9.5	10.4	9.7	9.2	9.2	9.3	9.6	9.5	9.

51472A I-75 Clarkston Ace Asphalt 4E30 Coarse 2.487

Project Number: Location: Contractor: Mix: Gradation:

SA	TURATED SURFACE DRY METHOD																				
П	Sample	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
Α	Dry Mass	1112.5	1112.6	1112.3	1110.5	1107.1	1113.3	1110.8	1111	1113.9	1111.4	1115.6	1099.5	1117.8	1117.4	1119.2	1118.6	1114	1113.4	1114.4	1115.1
В	Submerged Mass	638.7	640.8	638.2	637.2	634.1	639.8	639.1	638.1	9.629	636.7	640.5	631.3	643.4	643.5	646.1	644.2	640.7	640.6	641.2	640.1
С	SSD Mass	1116.6	1118.7	1118.5	1115.7	1115.7	1119.2	1115.6	1118	1119.4	1116.3	1120.1	1106	1123.4	1121.5	1124.6	1123.4	1121	1119.9	1120.6	1119.8
О	G _{mb} [A/(C-B)]	2.328	2.328	2.316	2.321	2.299	2.322	2.331	2.315	2.322	2.317	2.326	2.316	2.329	2.338	2.339	2.334	2.319	2.323	2.325	2.325
Е	Air Voids [(G _{mm} -D)/G _{mm}]	6.4	6.4	6.9	2'9	9.7	9.9	6.3	6.9	6.7	8.9	6.5	6.9	6.4	0:9	0.9	6.1	6.7	9.9	6.5	6.5

Phase I – 150mm Superpave Specimens

						_												
20	3716.9	94.23	94.24	94.17	94.32	94.24	150.710	150.460	150.585	2.215	12.1		20	3716.9	2156.5	3741.2	2.345	6.9
19	3721.9	94.31	94.38	94.32	94.27	94.32	150.320	150.610	150.465	2.219	11.9		19	3721.9	2162.4	3742.3	2.356	6.5
18	3719.6	94.70	94.56	94.31	94.39	94.49	150.510	150.440	150.475	2.214	12.2		18	3719.6	2164.1	3739.8	2.361	6.3
17	3719.2	94.24	60'76	94.37	94.84	94.39	150.480	150.320	150.400	2.218	12.0		- 11	3719.2	2159.3	3742.9	2.349	8'9
16	3722.4	94.29	94.24	94.70	94.38	94.40	150.660	150.890	150.775	2.208	12.4		16	3722.4	2167.7	3745.5	2.359	6.4
12	3719.8	94.50	94.32	94.23	94.35	94.35	150.300	150.470	150.385	2.220	11.9		15	3719.8	2163	3739.7	2.359	6.4
14	3720.9	94.12	94.40	94.47	94.62	94.40	150.250	150.610	150.430	2.218	12.0		14	3720.9	2158.4	3738.6	2.355	9.9
13	3719.5	94.20	94.33	94.44	94.63	94.40	150.870	150.600	150.735	2.208	12.4		13	3719.5	2148.4	3738.7	2.339	7.2
12	3726.6	94.80	94.41	94.47	94.52	94.55	150.250	150.590	150.420	2.218	12.0		12	3726.6	2170.8	3752.4	2.356	6.5
7	3720.6	94.46	94.50	94.39	94.52	94.47	150.260	150.360	150.310	2.220	11.9		11	3720.6	2163.8	3742.1	2.357	6.5
10	3723.4	69'76	94.31	94.55	94.84	09'146	150.840	150.230	150.535	2.212	12.2		10	3723.4	2164.1	3744	2:357	9'9
9	3722.8	94.42	94.39	94.67	94.34	94.46	150.090	150.360	150.225	2.224	11.8		6	3722.8	2172.8	3748.5	2.363	6.2
8	3731.4	94.29	94.51	94.44	94.49	94.43	150.200	149.810	150.005	2.236	11.3		8	3731.4	2176.7	3758.3	2.359	6.4
7	3723	94.61	94.44	94.56	94.47	94.52	149.800	150.150	149.975	2.230	11.5		7	3723	2168	3742.5	2.365	6.2
9	3723.9	94.44	94.54	94.34	94.39	94.43	150.420	150.360	150.390	2.220	11.9		9	3723.9	2174.2	3747.6	2.367	6.1
5	3727.4	94.29	94.64	94.49	94.32	94.44	150.360	150.480	150.420	2.221	11.9		2	3727.4	2166.7	3753.7	2.349	8.9
4	3720.8	94.70	94.72	94.35	94.40	94.54	150.590	150.410	150.500	2.212	12.2		4	3720.8	2164	3746.6	2.351	6.7
3	3724.2	94.33	94.59	94.90	94.56	09''60	150.200	150.510	150.355	2.217	12.0		3	3724.2	2167.9	3747.8	2.357	6.5
2	3715.7	94.59	94.61	94.50	94.33	94.51	150.540	150.680	150.610	2.207	12.4		2	3715.7	2156.6	3734.8	2.354	9.9
-	3723	94.56	94.41	94.48	94.49	94.49	150.630	150.590	150.610	2.212	12.2		-1	3723	2163.9	3748.7	2.349	8.9
Sample	Dry Mass	Height 1	Height 2	Height 3	Height 4	Average Height	Diameter 1	Diameter 2	Average Diameter	G _{mb} [A/(F*π*I ² /4)]	Air Voids [(G _{mm} -J)/G _{mm}]	SATURATED SURFACE DRY METHOD	Sample	Dry Mass	Submerged Mass	SSD Mass	G _{mb} [A/(C-B)]	Air Voids [(G _{mm} -D)/G _{mm}]

50651A M-50 Dundee Cadillac LLC Asphalt 3E1 Coarse 2.52

Project Number:
Location:
Contractor:
Mix:
Gradation:
Gram

	20	3655.2	94.48	94.44	94.38	94.37	94.42	151.03	150.53	150.78	2.168	12.9		20	3655.2	2107.7	3694.5	2.30	7.5
	19	3662.3	94.56	94.40	94.49	94.61	94.52	150.57	150.30	150.44	2.180	12.4		19	3662.3	2107.6	3693.8	2.31	7.2
	18	3660.2	94.23	94.21	94.29	94.34	94.27	150.74	150.43	150.59	2.180	12.4		18	3660.2	2105.3	3695.1	2.30	7.5
	- 17	3660.7	94.32	94.28	94.14	94.49	94.31	150.70	150.75	150.73	2.175	12.6		17	3660.7	2108.9	3698.1	2.30	7.5
	91	3659.3	94.18	94.48	26.48	90'1/6	27.76	150.65	150.70	150.68	2.177	12.5		16	3659.3	2114.9	3694.8	2.32	6.9
	15	3665.3	94.43	94.19	67.23	76.74	06.430	150.31	150.55	150.43	2.187	12.1		15	3665.3	2114.6	3703.7	2.31	7.3
	14	3655.9	94.24	94.06	94.35	94.43	94.27	150.34	150.40	150.37	2.184	12.3		14	3655.9	2107.4	3692.6	2.31	7.3
	13	3660.9	94.08	94.14	94.24	94.26	94.18	150.26	150.30	150.28	2.191	12.0		13	3660.9	2113.1	3694.8	2.31	7.0
	12	3658.7	94.14	94.29	67'56	94.23	64.24	150.33	150.32	150.33	2.188	12.1		12	3658.7	2117.7	2'689E	2.33	6.5
	11	3662.4	94.24	94.05	04'40	94.20	64.22	150.53	150.57	150.55	2.184	12.3		11	3662.4	2114.4	3691.3	2.32	6.7
	10	3662.2	94.28	94.26	64.24	21.19	64.24	150.46	150.43	150.45	2.186	12.2		10	3662.2	2120.2	3698.5	2:32	8.9
	6	3659.2	94.14	94.25	94.04	94.21	94.16	150.55	150.49	150.52	2.184	12.3		6	3659.2	2118.9	3696.3	2.32	8.9
	8	3664.2	94.44	94.08	94.25	94.13	94.23	150.40	150.46	150.43	2.188	12.1		8	3664.2	2118.9	3693.4	2.33	6.5
	7	3657.8	94.10	94.25	94.25	94.13	94.18	150.78	150.43	150.61	2.180	12.4		7	3657.8	2109.5	3692.4	2.31	7.2
	9	3666.3	94.22	94.14	94.09	94.28	94.18	150.44	150.54	150.49	2.189	12.1		9	3666.3	2115.9	3697.4	2.32	6.9
	2	3658.8	94.34	94.05	94.27	94.19	94.21	150.60	150.35	150.48	2.184	12.3		2	3658.8	2119.5	3692.8	2.33	9.9
	7	3656.6	94.63	94.39	94.54	94.52	94.52	150.51	150.62	150.57	2.173	12.7		4	9.9598	2117.1	3691	2.32	6.7
	3	3665.4	94.29	94.20	94.39	94.49	94.34	150.36	150.49	150.43	2.186	12.2		3	3665.4	2131.9	3708.1	2.33	9.9
	2	3655.9	94.20	94.31	94.45	94.20	94.29	150.27	150.10	150.19	2.189	12.1		2	3655.9	2119.3	3688.4	2.33	6.4
46023A M-21 St. Johns Michigan Paving & Materials 3E3 Coarse 2.489	1	3657.7	94.24	94.08	94.36	94.38	94.27	150.28	150.46	150.37	2.185	12.2		1	3657.7	2118.4	3696.3	2.32	6.9
Project Number: Lozation: Contractor: Mix Gradation: G _m OLUMETRIC ANALYSIS	Sample	Dry Mass (g)	Height 1 (mm)	Height 2 (mm)	Height 3 (mm)	Height 4 (mm)	Average Height (mm)	Diameter 1 (mm)	Diameter 2 (mm)	Average Diameter (mm)	G _{mb} [A/(F*π*1²/4)]	Air Voids [(G _{mm} -J)/G _{mm}]	SATURATED SURFACE DRY METHOD	Sample	Dry Mass (g)	Submerged Mass (g)	SSD Mass (g)	G _{mb} [A/(C-B)]	Air Voids [(G _{mm} -D)/G _{mm}]
ΛΟΓΩ	Н	A	В	ပ	Ω	ш	Ŀ	9	Ξ	=	٦	¥	SATU		⋖	В	S	Ω	ш

 Project Number:
 50650A

 Location:
 BL I-96 Howell

 Contractor:
 Rieth-Riley

 Mix:
 Fine

 Gradation:
 4E3

 Gmm
 2.501

50	3854.4	94.40	94.42	94.36	94.27	94.36	150.03	150.02	150.025	2.311	9.7		20	3854.4	2211.7	3858	2.341	6.4
19	3859.4	94.43	94.43	94.44	94.40	94.43	149.98	149.93	149.955	2.314	7.5		19	3859.4	2221	3865.5	2.347	62
18	3862.5	94.48	94.41	94.34	94.48	94.43	149.84	150.04	149.940	2.317	7.4		18	3862.5	2223	3867.7	2.348	6.1
17	3860.7	94.53	94.65	94.48	94.40	94.52	150.06	150	150.030	2.311	9.7		17	3860.7	2220.1	3866	2.346	62
16	3860.8	94.36	94.44	94.46	94.44	94.43	150.38	150.15	150.265	2.306	7.8		16	3860.8	2213.8	3865.5	2.337	6.5
12	3859.7	94.55	94.29	94.51	94.59	94.49	150.02	150.02	150.020	2.311	9.7		15	3859.7	2217.6	3864.1	2.344	63
14	3862.9	94.55	94.46	94.48	94.49	94.50	150.01	149.97	149.990	2.314	7.5		14	3862.9	2218.7	3866.8	2.344	63
13	3863.2	94.48	94.33	94.47	94.48	94.44	150.05	149.99	150.020	2.314	7.5		13	3863.2	2221.2	3867.1	2.347	62
12	9.0988	94.52	94.47	94.48	94.36	94.46	150.02	150.04	150.030	2.312	9.7		12	3860.6	2220.3	3865.2	2.347	69
11	3857.6	94.50	94.42	94.46	94.52	94.48	149.97	150.05	150.010	2.310	9.7		11	3857.6	2216	3861.8	2.344	8.9
10	3858	94.44	94.48	94.46	94.49	74.47	149.92	149.92	149.920	2.314	7.5		10	3858	2214.6	3862.5	2.341	6.4
6	3857.9	94.50	94.52	94.53	94.58	94.53	150.12	150.19	150.155	2.305	6.7		6	3857.9	2210.6	3863.4	2.334	6.7
8	3859.5	94.47	94.40	94.45	94.50	94.46	149.99	149.98	149.985	2.313	2.7		8	3859.5	2216.9	3863.2	2.344	63
7	3858	94.59	94.51	94.45	94.42	94.49	150.12	149.87	149.995	2.311	9.7		7	3858	2216.4	3862.1	2.344	63
9	3860.8	94.45	94.45	94.43	94.37	94.43	150.03	150.03	150.030	2.313	7.5		9	3860.8	2219	3865.9	2.344	63
2	3848.2	94.53	94.72	94.55	94.55	94.59	150.08	149.96	150.020	2.302	8.0		2	3848.2	2204.9	3852.5	2.336	9
4	3856.4	94.55	94.35	94.53	94.64	94.52	150.36	150.13	150.245	2.301	8.0		4	3856.4	2209.1	3861.7	2.334	6.7
က	3852.7	94.52	94.41	94.42	94.49	94.46	150.08	150.2	150.140	2.304	7.9		3	3852.7	2208.9	3859.2	2.335	6.7
2	3822	94.61	94.47	94.41	94.47	94.49	150.13	150.07	150.100	2.306	7.8		2	3822	2210.5	3862.2	2.334	6.7
1	3857.9	94.56	94.34	94.45	94.53	94.47	150.04	150.11	150.075	2.309	7.7		-	3857.9	2216.3	3862	2.344	8.9
Sample	Dry Mass	Height 1	Height 2	Height 3	Height 4	Average Height	Diameter 1	Diameter 2	Average Diameter	G _{mb} [A/(F*π*1²/4)]	Air Voids [(G _{mm} -J)/G _{mm}]	SATURATED SURFACE DRY METHOD	Sample	Dry Mass	Submerged Mass	SSD Mass	G _{mb} [A/(C-B)]	Air Voids [(GD)/G]

Location: M-21 Owosso	Contractor: Michigan Paving & Materials	Mix: 5E3	G _{mm} 2.470 VOLLIMETRIC & NAT VSIS	Sample 1 2 3 4	3814.9 38	94.59 94.50	94.53	94.56 94.60 94.53	94.60 94.56 94.60	Average Height (mm) 94.57 94.55 94.52	150.01		Average Diameter (mm) 150.00 149.95 150.06 150.01	G _{rb} [A/(F*** ¹² /4)] 2.283 2.284 2.284	Air Voids [(G _{rm} -J)/G _{rm}] 7.6 7.5 7.5	SATURATED SURFACE DRY METHOD	Sample 1 2 3 4	Dry Mass (g) 3814.9 3816.1 3816.9 3815		SSD Mass (g) 3819.8 3820.8 3822.1 3821.6	G _{rb} [A/(C-B)] 2.32 2.32 2.32 2.32	AirVoide I/G - DI/G 1 co co co
				5 6	3815.3 3	\vdash		94.58	94.50	94.56	H	149.95	1 149.90 150.02	1 2.286 2.282	7.4 7.6		9 2	3815.3 3813	1 2175.7 2173.4	6 3820.9 3819.5	2.32 2.32	
				7	3 3813.1	1 94.59	4 94.45	-	94.59	H	150.01	Н	150.02	2 2.282	9.7		7	3 3813.1	.4 2173.6	.5 3819	2.32	
				8	3816.4 381	94.68 94	94.57 94.	_	94.47 94.	94.57 94.	149.88 150	150.03 150	149.96 150	2.285 2.2	7.5 7.		8	3816.4 381	2178.2 217	3822.5 381	2.32 2.3	
				9 10	3812.5 3815	94.49 94.49	94.46 94.53		94.58 94.56	94.50 94.54	150.01 150.05	150.01 149.95	150.01 150.00	2.283 2.284	7.6 7.5		9 10	3812.5 3815	74.8 2176.8	3819.5 3822	2.32 2.32	
				7	3815.1	H	-				150.00	149.90	0 149.95	4 2.286	7.5		11	3815.1	H	3822.3		3
				12	3812.7	94.32	94.29	94.30	94.28	94.30	149.99	150.05	150.02	2.287	7.4		12	3812.7	2177.1	3819	2:32	
				13	65	94.54	94.53	-	94.45	94.50	150.01	149.96	149.99	2.288	7.4		13	3819.3	2180.1	3824.2	2.32	
				14	7.		94.50	-	94.53 6	94.54	149.94	149.85	149.90	2.289 2	7.3		14	3818.7 3	Н	3825.6 3	2.32	
				15	2	┢			94.50	94.47 9	150.03 15	150.05	150.04 14	2.284 2	7.5		15	3815.5 38	2179.2	3822.5 38	2.32	
				16	3815.9 3801.	94.39 94	94.51 94		94.38 94	94.44	150.01 149	149.96 146	149.99 146	2.287 2.2	7.4 7		16 1	3815.9 380	Н	3822.2 380	2.32 2.	
				17 18	2 38	94.42 94.52	94.69 94.57	-	94.43 94.36	94.51 94.51	149.94 150.02	149.56 150.06	149.75 150.04	2.284 2.283	7.5 7.6		17 18	3801.2 3814.5	2159.7 2177.1	3806.8 3820.9	2.31 2.32	
				18	38	94.40	94.56		94.37	94.44	150.02	150.01	150.02	2.288	7.4		19	3818.6	1 2180.4	3825.2	2:32	ć

Project Number: 34519A
Location: M-59 Brighton
Contractor: Ajax Paving
Mix: 3E10
Gradation: Coarse
2.503

Sample
2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 34/421 34/32 34/32 34/32 34/32 34/32 37/32 <td< td=""></td<>
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 4.35 3.75.05 3.75.05 3.75.05 3.75.05 3.75.05 3.74.05 <th< td=""></th<>
74 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 74.4 5 5 5 7 375.3 375.3 375.3 375.3 375.3 375.3 375.3 375.3 376.
5 6 7 8 9 10 12 13 14 15 16 17 18 18 94.47 34.53 375.31 375.31 375.31 375.31 375.31 375.31 376.07 374.82 374.82 374.82 374.82 374.82 374.82 374.82 374.97 374.97 374.92 374.82 374.82 374.82 374.82 374.82 374.87 347.72 347.82 344
3 352.3 371.9 8 9 10 11 12 13 14 15 16 17 18 19 7 352.3 371.6 371.6 371.6 371.6 371.6 371.6 371.6 371.6 371.6 371.7 18 71.7 28 71.7 28 28.4 2
37.8 B 9 FO 10 11 12 13 14 15 16 17 18 19 37.8 B
37.18.5 9.4.7 9.4.5 1.3 1.4 1.5 1.6 1.7 1.8 1.9 37.18.5 9.4.6 9.4.6 9.4.6 9.4.6 9.4.4 9.4.7 9.4.5 9.4.4 9.4.4 9.4.4 9.4.4 9.4.4 9.4.8 9.4.6 9.4.4 9.4.7 9.4.8 9.4.6 9.4.4 9.4.7 9.4.8 9.4.4 9.4.7 9.4.8 9.4.4 9.4.7 9.4.8 9.4.4 9.4.7 9.4.8 9.4.4 9.4.7 9.4.8 9.4.4 9.4.7 9.4.8 9.4.4 9.4.4 9.4.7 9.4.8 9.4.4 9.4.4 9.4.7 9.4.8 9.4.4 9.4.4 9.4.7 9.4.5 9.4.8 9.4.4 9.4.4 9.4.7 9.4.5 9.4.8 9.4.4
9 10 11 12 13 14 15 16 17 18 19 94.56 97.33 375.33 375.08 374.94 374.67 375.73 375.73 375.73 375.73 375.73 375.73 375.73 374.97 375.73 374.77 375.73 374.77 375.73 374.97 374.73 374.97 344.73 344.73 344.73 344.73 344.73 344.73 344.73 344.74 344.73 344.74
10 11 12 13 14 15 16 17 18 18 41.53 375.31 375.31 375.33 375.31 375.37 374.37 374.37 94.55 94.45 94.45 94.42 94.65 94.47 94.37 94.37 94.54 94.64 94.64 94.47 94.42 94.65 94.44 94.47 94.65 94.44 94.47 94.65 94.44 94.47 94.65 94.44 94.44 94.47 94.85 94.48 94.44 94.44 94.77 94.29 94.46 94.44 94.44 94.74 94.78 94.77 94.78 94.77 94.78 94.77 94.78 94.77 94.78 94.77 94.78 94.74 94.44 94.44 94.44 94.44 94.44 94.44 94.44 94.44 94.46 94.71 94.78 94.78 94.44 94.44 94.46 94.71 94.78 94.78 94.71 94.78 94.78 94.71 </td
375.1 12 13 14 15 16 17 18 18 34.47 375.0 374.62 374.82 374.84 374.77 34.57
17.2 17.3 17.4 17.5 17.6 17.7 18 19 18.45 94.42 94.85 94.40 94.47 94.57 94.54 18.45 94.42 94.89 94.74 94.47 94.57 94.54 18.47 94.48 94.74 94.42 94.45 94.44 94.49 94.67 18.44 94.47 94.85 94.44 94.46 94.77 18.02 16.02 16.02 16.02 16.01 16.01 16.02 16.15 18.02 16.02 16.02 16.01 16.01 16.02 16.02 18.02 16.02 16.02 16.01 16.01 16.01 16.02 16.02 19.31 10.6 10.6 10.5 10.4 10.4 10.6 12.0 19.31 10.8 3749.5 3749.5 3749.7 3751.2 3749.7 19.48 2175.3 2164.2 2174.2 2177.3 2162.2 2174.2 19.49 2175.3 2164.2 2174.2 2177.3 2164.2 2177.3 19.48 2175.3 2164.2 2174.2 2177.3 2164.2 2177.3 19.49 2175.3 2164.5 2174.2 2177.3 2164.5 2177.3 19.40 2175.3 2164.5 2174.2 2177.3 2164.5 2177.3 2169.8 2175.3 2164.5 2174.2 2177.3 2164.5 2177.3 2169.8 2175.3 2164.5 2174.2 2177.3 2164.5 2174.7 2169.8 2175.3 2164.5 2174.2 2177.7 2162.4 2149.5 2169.8 2175.3 2164.5 2174.7 2162.4 2149.5 2164.5 2175.3 2164.5 2174.7 2162.4 2149.5 2165.5 2175.3 2164.5 2174.7 2162.4 2149.5 2166.5 2175.3 2175.3 2171.7 2162.4 2149.5 2166.5 2175.3 2175.3 2171.7 2162.4 2149.5 2166.5 2175.3 2171.7 2162.4 2149.5 2166.5 2175.3 2171.7 2162.4 2149.5 2166.5 2175.3 2171.7 2162.4 2149.5 2166.5 2175.3 2175.3 2171.7 2162.4 2149.5 2166.5 2175.3 2171.7 2162.4 2149.5 2166.5 2175.3 2175.3 2171.7 2162.4 2149.5 2166.5 2175.3 2175.3 2171.7 2162.4 2149.5 2166.5 2175.3 2175.3 2175.3 2175.3 2175.3 2166.5 2175.3 2175.3 2175.3 2175.3 2166.5 2175.3 2175.3 2175.3 2166.5 2175.3 2175.3 2166.5 2175.3 2175.3 2166.5 2175.3 2175.3 2166.5 2175.3 2166.5 2175.3 2166.5 2175.3 2166.5
2 13 14 15 16 17 18 18 25 37508 3748.5 3748.4 347.3 3769.7 3749.7 46 94.42 94.69 94.47 94.57 94.59 94.59 56 94.42 94.65 94.44 94.43 94.64 94.64 27 94.58 94.46 94.47 94.59 94.69 94.77 44 94.27 94.58 94.44 94.46 94.77 94.78 44 94.27 94.58 94.44 94.46 94.51 94.78 24 150.22 150.32 150.16 150.19 150.29 151.6 22 150.37 150.19 150.09 150.29 151.6 22 150.37 150.19 150.09 151.28 24 2.23 2.24 2.23 2.20 24 2.23 2.24 2.23 2.20 24 1.06 1.0
14 15 16 17 18 18 3785 3784.4 316.3 376.2 378.7 317.8 317.8 378.7 34.3 34.3 34.5 34.3 34.5 34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.6 34.7 34.5 34.6 34.7 34.5 34.6 34.6 34.7 34.6 34.6 34.7 34.6 34.7 34.7 34.6 34.7 34.6 34.7 34.6 34.7 </td
15 16 17 18 19 19 19 19 19 19 19
16 17 18 19 19 19 19 19 19 19
77 18 19 3750.7 37512 3749.7 94.37 94.54 94.69 94.65 94.44 94.49 94.69 94.67 94.46 94.77 94.7 94.46 94.77 94.7 150.19 150.29 151.66 150.10 150.32 150.97 150.11 150.30 151.265 2.244 2.237 2.203 10.4 10.6 12.0 17 18 19 3750.7 3751.2 3749.7
7 37512 3749.7 7 37512 3749.7 7 94.54 94.65.4 94.54 94.70 94.51 94.70 9 4.51 94.70 9 4.50.37 151.26 1 10.6 12.03 1 10.6 12.03 1 2.237 2.203 1 10.6 12.03 1 2.237 2.203 1 3.751.2 3.749.7
3749.7 94.65 94.64 94.78 94.78 94.70 151.26 2.20 12.0 12.0 12.0

20 3753.5 94.43 94.50 94.50 94.80 150.11 150.11 150.19 2.242 10.4

ľ	L	2	3	4	9	9	7	8	6	10	11	12	13	14	15	16	17	18	16	20
3825 3822.9	3822.9	H	3824.3	3825.3	3823.8	3821.6	3822.4	3826.4	3824.2	3823.6	3822.2	3822.9	3821.5	3827.6	3822.2	3826.2	3824.6	3829.2	3823.9	3826.1
94.63 94.58	94.58		94.43	94.42	69'63	94.56	94.42	94.55	94.49	94.62	94.62	94.46	94.68	94.73	194.61	94.50	94.49	94.63	94.62	94.60
94.55 94.51	94.5		94.41	94.56	09'86	94'46	94.47	94.63	94.42	94.44	94.60	94.56	94.53	94.52	94.53	94.79	94.58	94.53	94.45	94.60
94.64 94	8	94.58	94.54	94.49	19'76	94.51	94.53	94.44	94.54	94.57	94.57	94.46	94.61	94.61	94.60	94.69	94.59	94.50	94.51	94.52
94.62 94	8	94.59	94.47	94.51	94.58	94.61	94.45	94.58	94.55	94.54	94.73	94.38	94.40	94.61	94.61	94.72	94.68	94.51	94.58	94.64
94.61	o	94.57	94.46	94.50	19'76	94.54	94.47	94.55	94.50	94.54	94.63	74.47	94.56	94.62	94.59	94.68	94.59	94.54	94.54	94.59
150.090		150.000	149.990	150.040	150.000	150.090	150.010	150.010	150.040	149.970	150.090	150.030	150.040	150.140	150.020	150.150	150.040	149.980	150.080	149.890
150.110		150.010	150.150	150.030	150.060	150.010	149.930	150.020	150.010	150.010	150.090	150.000	149.990	150.020	149.970	149.980	150.020	150.040	149.980	149.930
150.100		150.005	150.070	150.035	150.030	150.050	149.970	150.015	150.025	149.990	150.090	150.015	150.015	150.080	149.995	150.065	150.030	150.010	150.030	149.910
2.285		2.288	2.289	2.290	2.286	2.286	2.291	2.290	2.289	2.289	2.283	2.290	2.287	2.287	2.287	2.285	2.287	2.292	2.288	2.292
9.6		8.5	8.4	8.4	8.5	8.5	8.3	8.4	8.4	8.4	9.8	8.4	8.5	8.5	8.5	9.8	8.5	8.3	8.4	8.3
																				Ī
_		2	3	4	5	9	7	8	6	10	1	12	13	14	15	16	17	18	19	20
3825		3822.9	3824.3	3825.3	3823.8	3821.6	3822.4	3826.4	3824.2	3823.6	3822.2	3822.9	3821.5	3827.6	3822.2	3826.2	3824.6	3829.2	3823.9	3826.1
2207.4		2203.1	2202	2208.6	2202	2201.8	2201.3	2199.9	2202.1	2202.1	2198.7	2207.2	2202.4	2203.4	2200	2205.9	2207.5	2212.5	5200.9	2208.9
3840.8		3837.8	3836	3836.7	29886.7	3834.6	3834.3	3836.5	3832	3835.8	3833.3	3837.3	3833	3837.3	3835	3838.3	3838.6	3844.2	3834.7	3839.3
2.342		2.339	2.340	2.350	2.339	2.341	2.341	2.338	2.342	2.340	2.338	2.345	2.344	2.343	2.338	2.344	2.345	2.347	2.340	2.347
	Į													I						

74784A I-196 Grand Rapids Michigan Paving & Materials 5E10 Coarse 2.499

Project Number:
Location:
Contractor:
Mix:
Gradation:
Gram

51472A	I-75 Clarkston	Ace Asphalt	4E30	Coarse	2 487
Project Number:	Location:	Contractor:	Mix:	Gradation:	ď

	A	В	S		ш	ш	G	II	1-1	7	\times	Š	1	⋖	В	C	Ω
Sample	Dry Mass	Height 1	Height 2	Height 3	Height 4	Average Height	Diameter 1	Diameter 2	Average Diameter	$G_{mb} [A/(F^*\pi^*l^2/4)]$	Air Voids [(G _{mm} -J)/G _{mm}]	SATURATED SURFACE DRY METHOD	Sample	Dry Mass	Submerged Mass	SSD Mass	G _{mb} [A/(C-B)]
1	3766.4	94.67	94.65	94.53	94.55	94.60	150.06	150.04	150.050	2.252	9.5		1	3766.4	2159.3	3782.1	2.321
2	3770.4	94.63	94.60	94.59	94.61	94.61	149.91	149.97	149.940	2.257	9.2		2	3770.4	2159.1	3782.5	2.323
33	3768.5	94.67	94.71	94.57	94.61	94.64	149.94	150.03	149.985	2.254	9.4		3	3768.5	2163.5	3784.8	2.324
4	3767.6	94.53	94.46	94.76	94.58	94.58	150	150.05	150.025	2.253	9.4		4	3767.6	2154.3	3784.6	2.311
2	3770.1	94.51	94.60	94.66	94.51	94.57	149.96	149.93	149.945	2.258	9.2		2	3770.1	2159	3784.8	2.319
9	3773.3	94.60	94.68	94.55	94.59	94.61	150.01	150.08	150.045	2.256	6.3		9	3773.3	2166.8	3788.8	2.326
,	3768.5	94.55	94.60	94.48	94.55	94.55	149.99	150.05	150.020	2.255	9.3		7	3768.5	2155.9	3781.3	2.319
_∞	3769.8	94.48	94.56	94.50	94.71	94.56	149.98	149.9	149.940	2.258	9.2		8	3769.8	2157.7	3783.2	2.319
6	3772.8	94.42	94.60	94.51	94.56	94.52	150.02	149.99	150.005	2.259	9.2		6	3772.8	2161.4	3786.5	2.322
10	3770.2	94.51	94.51	94.50	94.38	94.48	150.07	149.96	150.015	2.258	9.2		10	3770.2	2160.3	3785.2	2.320
11	3769	94.49	94.45	94.49	94.52	94.49	149.92	149.88	149.900	2.260	9.1		11	3769	2159.3	3782.2	2.322
12	3772.6	94.54	94.64	94.67	94.54	94.60	150.05	150.07	150.060 1	2.255	9.3		12	3772.6	2159.2	3785.6	2.320
13	3774.8	94.54	94.48	94.59	94.48	94.52	150.07	149.94	150.005	2.260	9.1		13	3774.8	2164.4	3788	2.325
14	3770.6	94.65	94.59	94.50	94.61	94.59	149.94	149.9	149.920	2.258	9.2		14	3770.6	2165.3	3784.6	2.329
15	3771	94.54	94.63	94.63	94.61	94.60	150.02	150	150.010	2.255	9.3		15	3771	2161.2	3787.1	2.319
16	3769.9	94.46	94.44	94.47	94.57	94.49	150	150.03	150.015	2.257	9.2		16	3769.9	2160	3783.3	2.322
17	3769.2	94.57	94.54	94.53	94.48	94.53	149.96	149.96	149.960	2.258	9.5		17	3769.2	2163.3	3783.3	2.327
18	3766.9	94.60	94.63	94.62	94.53	94.60	150.08	150.06	150.070	2.251	9.5		18	3766.9	2157.5	3783.1	2.317
19	3776	94.51	94.54	94.58	94.44	94.52	150.06	150.05	150.055	2.259	9.2		19	3776	2163.5	3789.3	2.323
20	3768.5	94.60	94.54	94.60	94.62	94.59	149.96	149.97	149.965	2.256	9.3		20	3768.5	2167.1	3785.5	2.329

Phase II – 150mm Superpave Specimens for AASHTO T283

M-50 Dundee

Project Number: Location: Contractor: Mix: Gradation:

3E1

 G_{mm}

2.52

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3701.4	3702.8	3701.1	3701.1	3697.5	3697.2	3699.4	3690.6	3699	3702.8
В	Height 1	93.53	93.87	93.72	93.89	93.99	93.97	94.08	93.92	94.16	94.27
С	Height 2	93.83	93.84	93.72	93.96	93.89	94.04	93.89	93.92	93.9	94.09
D	Height 3	93.96	93.88	94.25	93.86	93.94	93.95	94.15	93.9	94.14	94.22
E	Height 4	93.73	93.88	94.05	93.94	94.09	93.83	93.95	93.81	94.16	94.26
F	Average Height	93.7625	93.8675	93.935	93.9125	93.9775	93.9475	94.0175	93.8875	94.09	94.21
G	Diameter 1	150.49	150.31	150.35	150.49	150.6	150.4	150.31	150.27	150.32	150.89
Н	Diameter 2	151.36	150.7	150.29	150.39	150.38	150.28	150.35	150.28	150.14	150.53
I	Average Diameter	150.925	150.505	150.32	150.44	150.49	150.34	150.33	150.275	150.23	150.71
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.207	2.217	2.220	2.217	2.212	2.217	2.217	2.216	2.218	2.203
K	Air Voids [(G _{mm} -J)/G _{mm}]	12.4	12.0	11.9	12.0	12.2	12.0	12.0	12.1	12.0	12.6
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3701.4	3702.8	3701.1	3701.1	3697.5	3697.2	3699.4	3690.6	3699	3702.8
В	Submerged Mass	2147.1	2149.8	2151.8	2145.7	2144	2150.5	2160.3	2150.5	2153.2	2153.7
С	SSD Mass	3729.4	3729.8	3727.8	3730.8	3724.8	3725.6	3736.9	3719.1	3726.6	3737.5
D	G _{mb} [A/(C-B)]	2.339	2.344	2.348	2.335	2.339	2.347	2.346	2.353	2.351	2.338
Е	Air Voids [(G _{mm} -D)/G _{mm}]	7.2	7.0	6.8	7.3	7.2	6.9	6.9	6.6	6.7	7.2

Project Number: Location: M-36 Pinckney

Contractor: Mix: Gradation:

 G_{mm}

2.511

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3694.1	3700.3	3695.2	3691.1	3730.3	3691.4	3692.7	3726.1	3730.4	3696.1
В	Height 1	94.55	94.34	94.65	94.35	94.44	94.39	94.6	94.47	94.56	94.45
С	Height 2	94.47	94.56	94.63	94.23	94.69	94.53	94.22	94.5	94.66	94.51
D	Height 3	94.53	94.38	94.42	94.52	94.6	94.54	94.38	94.57	94.62	94.57
E	Height 4	94.51	94.38	94.52	94.49	94.43	94.44	94.46	94.63	94.52	94.66
F	Average Height	94.515	94.415	94.555	94.3975	94.54	94.475	94.415	94.5425	94.59	94.5475
G	Diameter 1	150.21	150.45	150.21	150.17	150.18	150.1	150.25	150.07	150.066	150.35
Н	Diameter 2	150.15	150.44	150.06	150.19	150.27	150.2	150.26	150.09	150.09	150.38
	Average Diameter	150.18	150.445	150.135	150.18	150.225	150.15	150.255	150.08	150.078	150.365
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.206	2.205	2.207	2.207	2.226	2.207	2.206	2.228	2.229	2.201
K	Air Voids [(G _{mm} -J)/G _{mm}]	12.1	12.2	12.1	12.1	11.3	12.1	12.2	11.3	11.2	12.3
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3694.1	3700.3	3695.2	3691.1	3730.3	3691.4	3692.7	3726.1	3730.4	3696.1
В	Submerged Mass	2127.4	2135.8	2127.3	2122.2	2154.3	2122	2124.2	2150.2	2164	2118.1
С	SSD Mass	3719.3	3730.6	3721.5	3715.5	3758	3715.9	3717.8	3754.1	3765	3718.5
D	G _{mb} [A/(C-B)]	2.321	2.320	2.318	2.317	2.326	2.316	2.317	2.323	2.330	2.309
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.6	7.6	7.7	7.7	7.4	7.8	7.7	7.5	7.2	8.0

M-21 St. Johns

Project Number: Location: Contractor: Mix: Gradation:

2.489 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3662.2	3662.1	3671.9	3666.7	3660.6	3665.4	3665.9	3665.5	3656.8	3665
В	Height 1	94.4	94.46	94.4	93.9	94.44	93.47	94.49	94.16	94.28	94.86
С	Height 2	94.73	94.23	94.51	94.35	94.38	94.43	94.37	94.56	94.5	94.48
D	Height 3	94.6	94.18	94.29	94.58	94.56	94.31	94.23	94.14	94.55	94.53
E	Height 4	94.5	94.54	94.49	94.63	94.2	94.39	94.38	94.29	94.54	94.62
F	Average Height	94.5575	94.3525	94.4225	94.365	94.395	94.15	94.3675	94.2875	94.4675	94.6225
G	Diameter 1	150.59	150.21	150.15	149.65	149.85	149.76	150.19	150.32	150.66	150.85
Н	Diameter 2	150.03	150.12	150.4	150.62	150.6	149.91	150.12	150.03	150.53	149.83
I	Average Diameter	150.31	150.165	150.275	150.135	150.225	149.835	150.155	150.175	150.595	150.34
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.183	2.192	2.193	2.195	2.188	2.208	2.194	2.195	2.173	2.182
K	Air Voids [(G _{mm} -J)/G _{mm}]	12.3	12.0	11.9	11.8	12.1	11.3	11.9	11.8	12.7	12.3
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3662.3	3662.7	3672.3	3667.3	3660.8	3665.6	3666.5	3654.7	3656.8	3655
В	Submerged Mass	2121.5	2113.9	2130.3	2118.8	2111.5	2119.2	2117.8	2108.4	2110.1	2091.6
С	SSD Mass	3700.3	3696.7	3704.5	3695.5	3696.5	3697.7	3694.9	3687.2	3689.5	3681.1
D	G _{mb} [A/(C-B)]	2.320	2.314	2.333	2.326	2.310	2.322	2.325	2.315	2.315	2.299
Е	Air Voids [(G _{mm} -D)/G _{mm}]	6.8	7.0	6.3	6.6	7.2	6.7	6.6	7.0	7.0	7.6

M-45 Grand Rapids

Project Number: Location: Contractor: Mix: Gradation:

 G_{mm} 2.513

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3831.9	3839.3	3837.2	3837.4	3845.3	3843.4	3850	3844.1	3843.8	3841.8
В	Height 1	94.64	94.88	94.38	94.43	94.43	94.42	94.25	94.32	94.22	94.18
С	Height 2	95.37	94.75	94.58	94.28	94.39	94.28	94.17	94.22	94.26	94.47
D	Height 3	94.35	95.15	94.69	94.4	94.4	94.5	94.05	94.3	94.31	94.5
E	Height 4	94.97	95.91	94.36	94.31	94.57	94.38	94.13	94.58	94.14	94.2
F	Average Height	94.8325	95.1725	94.5025	94.355	94.4475	94.395	94.15	94.355	94.2325	94.3375
G	Diameter 1	150.07	150.41	150.04	149.94	149.85	149.95	149.99	149.91	149.97	150.1
Н	Diameter 2	150.1	150.82	149.884	149.99	149.93	150.15	150	150	149.97	150.11
	Average Diameter	150.085	150.615	149.962	149.965	149.89	150.05	149.995	149.955	149.97	150.105
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.284	2.264	2.299	2.303	2.307	2.303	2.314	2.307	2.309	2.301
K	Air Voids [(G _{mm} -J)/G _{mm}]	9.1	9.9	8.5	8.4	8.2	8.4	7.9	8.2	8.1	8.4
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	3831.9	3839.3	3837.2	3837.4	3845.3	-	3850	3844.1	3843.8	
В	Submerged Mass	2205.1	2203	2205.1	2221.2	2219.3					2216.4
C	SSD Mass	3848	3860	3849.2	3852.9	3858.9		3856.3	3853.8		
D	G _{mb} [A/(C-B)]	2.332	2.317	2.334	2.352	2.345	2.344	2.343	2.346	2.340	2.348
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.2	7.8	7.1	6.4	6.7	6.7	6.8	6.7	6.9	6.6

M-84 Saginaw

Project Number: Location: Contractor: Mix: Gradation:

2.543 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3826.2	3879.4	3883.9	3879.8	3887.4	3883.7	3887.8	3885	3882.5	3883.4
В	Height 1	94.67	94.23	94.45	94.04	94.28	94.06	94.12	94.34	94.12	94.39
С	Height 2	94.35	94.36	94.4	94.06	94.35	94.16	94.26	94.3	94.39	94.41
D	Height 3	94.43	94.56	94.66	94.37	94.17	94.24	94.7	94.24	94.34	94.28
E	Height 4	94.03	94.2	94.32	94.49	94.8	94.31	93.76	94.41	94.76	94.45
F	Average Height	94.37	94.3375	94.4575	94.24	94.4	94.1925	94.21	94.3225	94.4025	94.3825
G	Diameter 1	150.08	150.22	149.79	149.86	149.87	149.73	149.54	149.57	149.83	149.81
Н	Diameter 2	150.54	150.04	149.73	149.91	149.84	149.76	149.94	149.77	149.88	149.77
I	Average Diameter	150.31	150.13	149.76	149.885	149.855	149.745	149.74	149.67	149.855	149.79
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.285	2.323	2.334	2.333	2.335	2.341	2.343	2.341	2.332	2.335
K	Air Voids [(G _{mm} -J)/G _{mm}]	10.1	8.6	8.2	8.2	8.2	7.9	7.9	7.9	8.3	8.2
	Sample	4	2	3	4	5	6	7	8	9	10
A	Drv Mass	3876.6	_	3884.3		3887.3	,	3887.7	3884.9		
	,										
В	Submerged Mass	2264	2265.5	2264.1	2260.7	2269.6			2267.1	2263.1	2267.9
С	SSD Mass	3895.6	3901.5	3898.9	3894.9	3904.5	3903.6	3903.2	3901.8	3901.6	3902.2
D	G _{mb} [A/(C-B)]	2.376	2.372	2.376	2.374	2.378	2.374	2.382	2.377	2.369	2.376
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.6	6.7	6.6	6.6	6.5	6.6	6.3	6.5	6.8	6.6

BL I-96 Howell

Project Number: Location: Contractor: Mix: Gradation:

 G_{mm} 2.501

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3845.3	3841.3	3841.2	3850.3	3820.8	3844.8	3849.2	3847.7	3847.7	3847.1
В	Height 1	94.78	94.67	94.59	94.77	94.7	94.75	94.71	94.5	94.51	94.52
С	Height 2	94.88	94.83	94.79	94.92	94.76	94.55	94.63	94.54	94.55	94.5
D	Height 3	94.91	94.87	94.8	94.83	97.62	94.54	94.58	94.62	94.63	94.65
E	Height 4	94.86	94.8	94.69	94.86	94.9	94.68	94.74	94.68	94.6	94.52
F	Average Height	94.8575	94.7925	94.7175	94.845	95.495	94.63	94.665	94.585	94.5725	94.5475
G	Diameter 1	150.25	150.15	149.78	150.04	150.06	150.02	150.07	149.3	150.05	150.07
Н	Diameter 2	150.28	150.25	150.14	150.01	150.04	150.06	150.09	150	150.01	150.09
	Average Diameter	150.265	150.2	149.96	150.025	150.05	150.04	150.08	149.65	150.03	150.08
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.286	2.287	2.296	2.296	2.263	2.298	2.299	2.313	2.301	2.300
K	Air Voids [(G _{mm} -J)/G _{mm}]	8.6	8.6	8.2	8.2	9.5	8.1	8.1	7.5	8.0	8.0
			_	_	,		•	7	_	•	40
	Sample	1	2	3	4	5	6	,	8	9	10
Α	Dry Mass	3845.3	3841.3	3841.2	3850.3	3820.8		3849.2	3847.7	3847.7	3847.1
В	Submerged Mass	2204.9	2201	2200.7	2207.8	2209.3		2209.2	2207.5	2212.1	2205.2
С	SSD Mass	3855	3852	3850.4	3858.1	3857.8	3853.6	3858.9	3856.9	3858.2	3855.6
D	G _{mb} [A/(C-B)]	2.330	2.327	2.328	2.333	2.318	2.334	2.333	2.333	2.337	2.331
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.8	7.0	6.9	6.7	7.3	6.7	6.7	6.7	6.5	6.8

M-21 Owosso

Project Number: Location: Contractor: Mix: Gradation:

2.47 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3798.3	3796	3841	3796.1	3796.4	3799.4	3800.6	3796.6	3815.9	3797.9
В	Height 1	94.43	94.39	94.49	94.41	94.3	94.41	94.5	94.36	94.28	94.37
С	Height 2	94.4	94.33	94.29	94.52	94.35	94.46	94.36	94.48	94.35	94.43
D	Height 3	94.32	94.4	94.36	94.38	94.32	94.4	94.37	94.41	94.38	94.51
E	Height 4	94.35	94.34	94.35	94.35	94.37	94.35	94.36	94.32	94.33	94.29
F	Average Height	94.375	94.365	94.3725	94.415	94.335	94.405	94.3975	94.3925	94.335	94.4
G	Diameter 1	149.96	149.71	149.93	149.92	149.85	149.96	149.88	149.91	149.9	149.95
Н	Diameter 2	149.83	149.78	149.92	149.98	149.86	149.98	149.95	149.93	149.88	149.91
I	Average Diameter	149.895	149.745	149.925	149.95	149.855	149.97	149.915	149.92	149.89	149.93
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.281	2.284	2.305	2.277	2.282	2.278	2.281	2.278	2.292	2.279
K	Air Voids [(G _{mm} -J)/G _{mm}]	7.7	7.5	6.7	7.8	7.6	7.8	7.7	7.8	7.2	7.7
										_	
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3798.3	3796	3841	3796.1	3796.4	3799.4	3800.6	3796.6	3815.9	3797.9
В	Submerged Mass	2166.7	2163.1	2203.3	2159.9	2162.7	2164.8	2160.6	2156.5	2178.2	2156.9
С	SSD Mass	3809.5	3806.1	3848.9	3804.8	3805.7	3809.3	3807.7	3804.2	3823.5	3804.7
D	G _{mb} [A/(C-B)]	2.312	2.310	2.334	2.308	2.311	2.310	2.307	2.304	2.319	2.305
Е	Air Voids [(G _{mm} -D)/G _{mm}]	6.4	6.5	5.5	6.6	6.5	6.5	6.6	6.7	6.1	6.7

M-66 Battle Creek

Project Number: Location: Contractor: Mix: Gradation:

 G_{mm} 2.47

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3822.1	3829.2	3806.2	3804.9	3813.3	3809.2	3825.4	3822.3	3807.9	3822.9
В	Height 1	94.47	94.51	94.36	94.49	94.51	94.53	94.5	94.37	94.42	94.24
С	Height 2	94.5	94.37	94.41	94.58	94.49	94.52	94.49	94.44	94.32	94.32
D	Height 3	94.44	94.4	94.45	94.45	94.49	94.37	94.46	95.04	94.43	94.28
E	Height 4	94.48	94.47	94.36	94.47	94.55	94.56	94.76	94.92	94.51	94.47
F	Average Height	94.4725	94.4375	94.395	94.4975	94.51	94.495	94.5525	94.6925	94.42	94.3275
G	Diameter 1	149.95	149.94	149.99	149.99	150.02	149.94	150.23	150.07	149.97	149.76
Н	Diameter 2	149.94	149.98	149.92	149.98	150.01	150.06	149.88	149.84	149.99	149.99
	Average Diameter	149.945	149.96	149.955	149.985	150.015	150	150.055	149.955	149.98	149.875
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.291	2.296	2.283	2.279	2.283	2.281	2.288	2.286	2.283	2.297
K	Air Voids [(G _{mm} -J)/G _{mm}]	7.2	7.1	7.6	7.7	7.6	7.6	7.4	7.5	7.6	7.0
	Sample	1	2	3	4	5	6	7	8	9	10
А	Dry Mass	3822.1	3829.2	3806.2	3804.9	3813.3	3809.2	3825.4	3822.3	3807.9	3822.9
В	Submerged Mass	2181.8	2187.5	2166.7	2162.3	2173.6	2168.8	2184.8	2179.8	2167.5	2180.6
С	SSD Mass	3829.5	3836.9	3812.7	3811.3	3820.3	3817	3832.3	3828.7	3815.2	3829.8
D	G _{mb} [A/(C-B)]	2.320	2.322	2.312	2.307	2.316	2.311	2.322	2.318	2.311	2.318
Е	Air Voids [(G _{mm} -D)/G _{mm}]	6.1	6.0	6.4	6.6	6.2	6.4	6.0	6.2	6.4	6.2

M-50 Dundee

Project Number: Location: Contractor: Mix: Gradation: 4 E 3

2.538 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3823.3	3824.6	3825.3	3825.7	3829.5	3827	3829.8	3826.7	3829.5	3831.4
В	Height 1	94.65	94.3	94.5	94.42	94.28	94.37	94.38	94.24	94.4	94.19
С	Height 2	94.24	94.46	94.45	94.41	94.44	94.47	94.19	94.18	94.45	94.3
D	Height 3	94.34	94.35	94.58	94.58	94.49	94.41	94.28	94.1	94.51	94.8
E	Height 4	94.36	94.71	94.54	94.33	94.56	94.5	94.28	94.4	94.39	94.37
F	Average Height	94.3975	94.455	94.5175	94.435	94.4425	94.4375	94.2825	94.23	94.4375	94.415
G	Diameter 1	150.01	149.97	149.93	150.12	150	150	150.05	150.01	150.02	150.15
Н	Diameter 2	150.06	149.96	149.96	149.99	149.91	150.11	150.01	150.04	150.05	150.01
I	Average Diameter	150.035	149.965	149.945	150.055	149.955	150.055	150.03	150.025	150.035	150.08
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.291	2.292	2.292	2.291	2.296	2.292	2.298	2.297	2.294	2.294
K	Air Voids [(G _{mm} -J)/G _{mm}]	9.7	9.7	9.7	9.7	9.5	9.7	9.5	9.5	9.6	9.6
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3823.3	3824.6	3825.3	3825.7	3829.5	3827	3829.8	3826.7	3829.5	3831.4
В	Submerged Mass	2221.1	2220.8	2220.3	2226	2231.4	2231	2229.4	2229	2231.9	2232.9
С	SSD Mass	3838.2	3839.8	3840.4	3841.4	3849.3	3851.1	3846.4	3842.1	3847.6	3849.5
D	G _{mb} [A/(C-B)]	2.364	2.362	2.361	2.368	2.367	2.362	2.368	2.372	2.370	2.370
Е	Air Voids [(G _{mm} -D)/G _{mm}]	6.8	6.9	7.0	6.7	6.7	6.9	6.7	6.5	6.6	6.6

US-12 MIS

Project Number: Location: Contractor: Mix: Gradation:

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3741.2	3713.7	3740.4	3714.4	3711.4	3741.3	3715.3	3717.5	3719.9	3722.1
В	Height 1	94.6	94.41	94.63	94.39	94.32	94.48	94.33	94.33	94.33	94.33
С	Height 2	94.4	94.34	94.59	94.74	94.54	94.39	94.3	94.24	94.29	94.39
D	Height 3	94.47	94.53	94.55	94.36	94.5	94.37	94.36	94.29	94.42	94.52
E	Height 4	94.5	94.33	94.62	94.55	94.52	94.4	94.29	94.29	94.36	94.39
F	Average Height	94.4925	94.4025	94.5975	94.51	94.47	94.41	94.32	94.2875	94.35	94.4075
G	Diameter 1	150.11	150.15	150.09	150.31	150.22	150.31	150.21	150.1	150.16	150.16
Н	Diameter 2	150.06	150.29	150.1	150.29	150.39	150.14	150.3	150.14	150.06	150.17
	Average Diameter	150.085	150.22	150.095	150.3	150.305	150.225	150.255	150.12	150.11	150.165
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.238	2.220	2.235	2.215	2.214	2.236	2.221	2.228	2.228	2.226
K	Air Voids [(G _{mm} -J)/G _{mm}]	10.2	10.9	10.3	11.1	11.1	10.2	10.8	10.6	10.6	10.6
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3741.2	3713.7	3740.4	3714.4	3711.4	3741.3	3715.3	3717.5	3719.9	3722.1
В	Submerged Mass	2143.9	2112.9	2144	2125.1	2130	2128.6	2139.3	2137.9	2143.6	2136.6
С	SSD Mass	3760.1	3732.1	3760.3	3739.8	3731.1	3739.9	3747.5	3745.3	3748.9	3747.1
D	G _{mb} [A/(C-B)]	2.315	2.294	2.314	2.300	2.318	2.322	2.310	2.313	2.317	2.311
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.1	7.9	7.1	7.7	6.9	6.8	7.3	7.2	7.0	7.2

M-59 Brighton

Project Number: Location: Contractor: Mix: Gradation:

2.503 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3716.6	3722.2	3727.5	3717.7	3725	3725.1	3725.5	3718.8	3721	3719.6
В	Height 1	94.13	94.29	94.79	94.42	94.3	94.28	94.39	94.38	94.48	94.84
С	Height 2	94.19	94.47	94.41	94.12	94.37	94.18	94.3	94.2	94.43	94.45
D	Height 3	94.55	93.87	94.29	94.42	94.21	94.7	94.5	94.42	94.1	94.43
E	Height 4	94.32	94.54	94.98	94.49	94.48	94.25	94.56	94.35	94.63	94.54
F	Average Height	94.2975	94.2925	94.6175	94.3625	94.34	94.3525	94.4375	94.3375	94.41	94.565
G	Diameter 1	149.89	149.87	150.73	150.2	149.85	150.16	149.89	150.28	150.22	149.88
Н	Diameter 2	150.25	149.91	150.85	150.11	150.04	149.98	149.99	150.12	150.19	150.08
I	Average Diameter	150.07	149.89	150.79	150.155	149.945	150.07	149.94	150.2	150.205	149.98
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.228	2.237	2.206	2.225	2.236	2.232	2.234	2.225	2.224	2.226
K	Air Voids [(G _{mm} -J)/G _{mm}]	11.0	10.6	11.9	11.1	10.7	10.8	10.7	11.1	11.1	11.0
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3716.6	3722.2	3727.5	3717.7	3725	3725.1	3725.5	3718.8	3721	3719.6
В	Submerged Mass	2136.5	2145.7	2142.5	2139.6	2149.5	2143.9	2161.3	2160.7	2143.5	2150.6
С	SSD Mass	3737	3740.3	3748.4	3738	3747.2	3744.4	3749.8	3740.5	3743	3740.7
D	G _{mb} [A/(C-B)]	2.322	2.334	2.321	2.326	2.331	2.327	2.345	2.354	2.326	2.339
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.2	6.7	7.3	7.1	6.9	7.0	6.3	6.0	7.1	6.5

Michigan Ave. Dearborn

Project Number: Location: Contractor: Mix: Gradation: 3 E 10

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3749.2	3768.2	3755.1	3743.4	3748.4	3735.4	3745.3	3754.4	3743.5	3762
В	Height 1	94.74	94.42	94.29	95.04	94.86	94.89	95.04	94.42	94.4	94.55
С	Height 2	94.71	94.29	94.42	95.01	94.61	96.52	95.12	94.52	94.9	94.5
D	Height 3	94.97	94.29	94.31	95.05	94.49	95.2	94.8	94.4	94.82	94.39
E	Height 4	94.6	94.39	95.37	95.12	94.8	94.89	95.26	94.44	94.35	94.6
F	Average Height	94.755	94.3475	94.5975	95.055	94.69	95.375	95.055	94.445	94.6175	94.51
G	Diameter 1	149.5	150.05	151.37	150.5	149.73	149.86	150.32	150.65	149.8	150.5
Н	Diameter 2	149.72	149.98	150.68	149.81	149.5	149.95	149.92	150.38	149.64	150.57
I	Average Diameter	149.61	150.015	151.025	150.155	149.615	149.905	150.12	150.515	149.72	150.535
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.251	2.260	2.216	2.224	2.252	2.219	2.226	2.234	2.247	2.237
K	Air Voids [(G _{mm} -J)/G _{mm}]	9.7	9.4	11.1	10.8	9.7	11.0	10.7	10.4	9.9	10.3
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3749.2	3768.2	3755.1	3743.4	3748.4	3735.4	3745.3	3754.4	3743.5	3762
В	Submerged Mass	2156	2171.1	2138.8	2160	2154.3	2118.8	2131.3	2146.4	2139.6	2151.8
С	SSD Mass	3760.7	3780.8	3764.5	3759	3756	3743.1	3750.8	3760.9	3750.9	3769.5
D	G _{mb} [A/(C-B)]	2.336	2.341	2.310	2.341	2.340	2.300	2.313	2.325	2.323	2.326
Е	Air Voids [(G _{mm} -D)/G _{mm}]	6.3	6.1	7.3	6.1	6.1	7.8	7.2	6.7	6.8	6.7

Vandyke, Detroit

Project Number: Location: Contractor: Mix: Gradation:

2.604 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3977.7	3982.6	3985.4	3967	3982.1	3983.6	3977.8	3962	3980.7	3958.8
В	Height 1	94.39	94.46	94.4	94.73	94.35	94.34	94.47	94.61	94.14	94.66
С	Height 2	94.48	94.37	94.43	94.69	94.42	94.4	94.38	94.55	94.37	94.61
D	Height 3	94.36	94.5	94.44	94.62	94.53	94.31	94.33	94.69	94.41	94.5
E	Height 4	94.51	94.38	94.43	94.83	94.2	94.33	94.29	94.64	94.37	94.62
F	Average Height	94.435	94.4275	94.425	94.7175	94.375	94.345	94.3675	94.6225	94.3225	94.5975
G	Diameter 1	150.1	149.99	150.02	149.96	150.04	150	150.02	149.92	150.16	150.05
Н	Diameter 2	149.96	150.1	149.94	149.95	150	150.13	149.99	150.02	150.06	149.93
I	Average Diameter	150.03	150.045	149.98	149.955	150.02	150.065	150.005	149.97	150.11	149.99
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.383	2.385	2.389	2.371	2.387	2.387	2.385	2.370	2.385	2.368
K	Air Voids [(G _{mm} -J)/G _{mm}]	8.5	8.4	8.3	8.9	8.3	8.3	8.4	9.0	8.4	9.0
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3977.7	3982.6	3985.4	3967	3982.1	3983.6	3977.8	3962	3980.7	3958.8
В	Submerged Mass	2362.2	2360.9	2363.2	2341.5	2360.7	2367.6	2364.8	2339.8	2364.7	2337.2
С	SSD Mass	3990.9	3993	3992.1	3981.4	3992.2	3995.6	3989.6	3976.9	3996.5	3973.8
D	G _{mb} [A/(C-B)]	2.442	2.440	2.447	2.419	2.441	2.447	2.448	2.420	2.439	2.419
Е	Air Voids [(G _{mm} -D)/G _{mm}]	6.2	6.3	6.0	7.1	6.3	6.0	6.0	7.1	6.3	7.1

US-23 Heartland

Project Number: Location: Contractor: Mix: Gradation:

2.492 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3683.5	3676.6	3680	3675	3684.4	3684	3680.1	3681.2	3681.5	3680.5
В	Height 1	94.3	94.3	94.44	94.31	94.5	94.5	94.76	94.69	94.77	94.5
С	Height 2	94.34	94.39	94.18	94.55	94.3	94.66	94.55	94.75	95.21	93.91
D	Height 3	94.16	94.21	94.86	94.6	94.98	94.15	94.44	94.91	94.55	94.54
E	Height 4	94.4	94.31	94.3	94.84	94.42	94.74	94.57	94.66	95.13	94.52
F	Average Height	94.3	94.3025	94.445	94.575	94.55	94.5125	94.58	94.7525	94.915	94.3675
G	Diameter 1	150.04	149.87	150.04	149.67	149.91	150.2	150.11	150.32	149.77	150.01
Н	Diameter 2	150.24	149.99	150.17	150.21	150.54	150.22	150.23	150.04	150.66	150.14
1	Average Diameter	150.14	149.93	150.105	149.94	150.225	150.21	150.17	150.18	150.215	150.075
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.206	2.208	2.202	2.201	2.199	2.200	2.197	2.193	2.189	2.205
K	Air Voids [(G _{mm} -J)/G _{mm}]	11.5	11.4	11.6	11.7	11.8	11.7	11.8	12.0	12.2	11.5
							•		_	•	40
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3683.5		3680	3675	3684.4	3684	3680.2	3681.1	3681.5	
В	Submerged Mass	2108.7	2108.1	2101.8	2123.7	2126.6			2114.2	2105.9	
С	SSD Mass	3713.6	3704.8	3706.2	3708.6	3715.1	3711.4	3710.8	3706.6	3706.2	3703.4
D	G _{mb} [A/(C-B)]	2.295	2.303	2.294	2.319	2.319	2.328	2.317	2.312	2.301	2.308
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.9	7.6	8.0	7.0	6.9	6.6	7.0	7.2	7.7	7.4

I-75 Levering Rd

Project Number: Location: Contractor: Mix: Gradation:

2.443 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3737.1	3737.7	3736.4	3734.9	3736.2	3742.7	3737.9	3736.3	3743.9	3738.3
В	Height 1	94.88	94.29	94.6	94.31	94.3	94.46	94.41	94.34	94.29	94.56
С	Height 2	94.77	94.28	94.75	94.37	94.3	94.61	94.68	94.54	94.33	94.38
D	Height 3	94.45	94.84	94.82	94.25	94.5	94.41	94.33	94.76	94.3	94.53
E	Height 4	94.57	94.13	94.34	94.26	94.57	94.32	94.46	94.4	94.42	94.36
F	Average Height	94.6675	94.385	94.6275	94.2975	94.4175	94.45	94.47	94.51	94.335	94.4575
G	Diameter 1	149.96	149.76	150.07	149.88	149.94	150	150.01	149.96	149.67	149.96
Н	Diameter 2	149.91	149.9	150.03	149.88	150.02	149.98	150.03	149.94	150	150
I	Average Diameter	149.935	149.83	150.05	149.88	149.98	149.99	150.02	149.95	149.835	149.98
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.236	2.246	2.233	2.245	2.240	2.243	2.238	2.239	2.251	2.240
K	Air Voids [(G _{mm} -J)/G _{mm}]	8.5	8.1	8.6	8.1	8.3	8.2	8.4	8.4	7.9	8.3
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3736.9	3737.4	3736.5	3734.9	3736.2	3742.6	3737.5	3736.1	3743.7	3738.6
В	Submerged Mass	2111.3	2115.6	2110.8	2113.6	2121.8	2124.6	2118	2115.2	2123.3	2118.9
С	SSD Mass	3747.3	3748.9	3747.5	3748.7	3750.7	3753.9	3752.8	3748.5	3757.3	3750.8
D	G _{mb} [A/(C-B)]	2.284	2.288	2.283	2.284	2.294	2.297	2.286	2.287	2.291	2.291
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.5	6.3	6.6	6.5	6.1	6.0	6.4	6.4	6.2	6.2

I-196 Grand Rapids

Project Number: Location: Contractor: Mix: Gradation:

 G_{mm} 2.499

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3806.2	3810.7	3806.6	3808.3	3808.8	3806.3	3805.4	3812.1	3806.1	3804.2
В	Height 1	94.48	94.5	94.27	94.73	94.53	94.58	94.64	94.49	94.51	94.56
С	Height 2	94.57	94.53	94.36	94.44	94.48	94.41	94.48	94.56	94.46	94.65
D	Height 3	94.5	94.51	94.51	94.49	94.58	94.57	94.73	94.59	94.75	94.46
E	Height 4	94.41	94.53	94.5	94.88	94.55	94.53	94.7	94.4	94.54	94.46
F	Average Height	94.49	94.5175	94.41	94.635	94.535	94.5225	94.6375	94.51	94.565	94.5325
G	Diameter 1	150.05	149.98	150.02	150.12	150.03	149.9	150.15	150.02	150.05	150.07
Н	Diameter 2	150.08	150.2	150.03	150.15	150.11	150.07	150.06	150.14	150.08	150.1
	Average Diameter	150.065	150.09	150.025	150.135	150.07	149.985	150.105	150.08	150.065	150.085
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.277	2.279	2.281	2.273	2.278	2.279	2.272	2.280	2.276	2.275
K	Air Voids [(G _{mm} -J)/G _{mm}]	8.9	8.8	8.7	9.0	8.9	8.8	9.1	8.8	8.9	9.0
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3806.2	3810.7	3806.6	3808.3	3808.8	3806.3	3805.4	3812.1	3806.1	3804.2
В	Submerged Mass	2184.4	2193.5	2190.2	2185.2	2185.7	2187.7	2183.5	2193.6	2186	
С	SSD Mass	3819.6	3829.5	3823.3	3826.1	3822.6	3821.2	3819.4	3827.4	3822.2	3822.5
D	G _{mb} [A/(C-B)]	2.328	2.329	2.331	2.321	2.327	2.330	2.326	2.333	2.326	2.328
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.9	6.8	6.7	7.1	6.9	6.8	6.9	6.6	6.9	6.8

I-75 Clarkston

Project Number: Location: Contractor: Mix: Gradation:

2.487 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3764.5	3763.5	3770.9	3766.9	3766.3	3763.7	3767.2	3770.3	3763.3	3767.8
В	Height 1	94.39	94.44	94.46	94.42	94.42	94.36	94.37	94.36	94.33	94.4
С	Height 2	94.56	94.46	94.64	94.36	94.34	94.28	94.52	94.48	94.23	94.34
D	Height 3	94.39	94.42	94.39	94.3	94.3	94.49	94.59	94.4	94.47	94.42
Е	Height 4	94.26	94.49	94.45	94.31	94.52	94.4	94.44	94.34	94.45	94.39
F	Average Height	94.400	94.453	94.485	94.348	94.395	94.383	94.480	94.395	94.370	94.388
G	Diameter 1	150.18	150.07	149.96	150.09	149.96	150.06	150.14	149.94	150.14	150.01
I	Diameter 2	150.08	150.11	150.04	150	150.07	150.03	150.31	149.92	150.08	150.02
	Average Diameter	150.130	150.090	150.000	150.045	150.015	150.045	150.225	149.930	150.110	150.015
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.253	2.252	2.258	2.258	2.257	2.255	2.250	2.262	2.253	2.258
K	Air Voids [(G _{mm} -J)/G _{mm}]	9.4	9.4	9.2	9.2	9.2	9.3	9.5	9.0	9.4	9.2
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3764.5	3763.5	3770.9	3766.9	3766.3	3763.7	3767.2	3770.3	3763.3	3767.8
В	Submerged Mass	2155.2	2158.2	2162.9	2154.6	2157.2	2156.6	2152.4	2158.6	2154.1	2155.9
С	SSD Mass	3778.3	3781.5	3784.5	3782.5	3781.4	3778.3	3782.5	3783.8	3778.9	3780
D	G _{mb} [A/(C-B)]	2.319	2.318	2.325	2.314	2.319	2.321	2.311	2.320	2.316	2.320
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.7	6.8	6.5	7.0	6.8	6.7	7.1	6.7	6.9	6.7

M-53 Detroit

Project Number: Location: Contractor: Mix: Gradation:

 G_{mm} 2.563

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3884	3886.4	3891.6	3884.7	3878.5	3883.8	3878.4	3879.4	3879.4	3877.3
В	Height 1	94.39	94.25	94.3	94.31	94.48	94.31	94.28	94.55	94.29	94.43
С	Height 2	94.31	94.3	94.59	94.46	94.23	94.35	94.4	94.36	94.45	94.34
D	Height 3	94.35	94.18	94.41	94.51	94.28	94.36	94.4	94.45	94.53	94.37
E	Height 4	94.4	94.54	94.34	94.72	94.5	94.37	94.41	94.41	94.4	94.57
F	Average Height	94.3625	94.3175	94.41	94.5	94.3725	94.3475	94.3725	94.4425	94.4175	94.4275
G	Diameter 1	150.02	150.11	149.98	149.95	150.09	150.07	149.98	150.07	150.01	150.17
Н	Diameter 2	150.19	150.03	150.1	150	150.16	150.09	149.95	150.17	150.26	150.06
	Average Diameter	150.105	150.07	150.04	149.975	150.125	150.08	149.965	150.12	150.135	150.115
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.326	2.330	2.331	2.327	2.322	2.327	2.327	2.321	2.321	2.320
K	Air Voids [(G _{mm} -J)/G _{mm}]	9.2	9.1	9.0	9.2	9.4	9.2	9.2	9.5	9.4	9.5
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3884	3886.4	3891.6		3878.5	,	3878.4	-	3879.4	
В	Submerged Mass	2293.8	2290.2	2294.1	2289.5	2279.5			2276.4	2278.6	
С	SSD Mass	3905.9	3907.9	3911.7	3903.1	3897.3		3898	3898.5	3896.7	3894.5
D	G _{mb} [A/(C-B)]	2.409	2.402	2.406	2.407	2.397	2.405	2.404	2.392	2.398	2.391
Е	Air Voids [(G _{mm} -D)/G _{mm}]	6.0	6.3	6.1	6.1	6.5	6.2	6.2	6.7	6.5	6.7

Michigan Ave Dearborn

Project Number: Location: Contractor: Mix: Gradation: 4 E 10

2.485 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3740.3	3735.1	3738.8	3747.1	3742.2	3746.6	3742.2	3747.3	3748.3	3748.2
В	Height 1	94.45	94.41	94.55	94.28	94.38	94.18	94.44	94.28	94.54	94.27
С	Height 2	94.46	94.53	94.6	94.25	94.46	94.39	94.33	94.3	94.43	94.37
D	Height 3	94.9	94.38	94.46	94.41	94.34	94.43	94.32	94.54	94.32	94.41
E	Height 4	94.5	94.5	94.34	94.27	94.45	94.27	94.45	94.34	94.25	94.42
F	Average Height	94.5775	94.455	94.4875	94.3025	94.4075	94.3175	94.385	94.365	94.385	94.3675
G	Diameter 1	150.09	150.27	150.46	150.13	150.18	150.17	150.06	150.01	150.17	150.15
Н	Diameter 2	150.2	150.22	150.24	150.16	150.09	150.09	149.97	150.05	150.08	150.06
I	Average Diameter	150.145	150.245	150.35	150.145	150.135	150.13	150.015	150.03	150.125	150.105
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.234	2.230	2.229	2.244	2.239	2.244	2.243	2.246	2.244	2.245
K	Air Voids [(G _{mm} -J)/G _{mm}]	10.1	10.2	10.3	9.7	9.9	9.7	9.7	9.6	9.7	9.7
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3740.3	3735.1	3738.8	3747.1	3742.2	3746.6	3742.2	3747.3	3748.3	3748.2
В	Submerged Mass	2139.7	2136.7	2139.5	2146	2139.5	2146.8	2144.8	2141	2146	2141.6
С	SSD Mass	3753.5	3749.7	3752.4	3760.5	3754.7	3763.1	3762.1	3758.2	3766.5	3762
D	G _{mb} [A/(C-B)]	2.318	2.316	2.318	2.321	2.317	2.318	2.314	2.317	2.313	2.313
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.7	6.8	6.7	6.6	6.8	6.7	6.9	6.8	6.9	6.9

I-75 Toledo

Project Number: Location: Contractor: Mix: Gradation:

 G_{mm} 2.507

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3808.9	3801.3	3802.1	3812.6	3803.6	3805.5	3803.6	3808.4	3805.9	3806.9
В	Height 1	94.45	94.46	94.52	94.27	94.5	94.37	94.38	94.43	94.46	94.39
С	Height 2	94.37	94.39	94.41	94.42	94.54	94.43	94.49	94.55	94.47	94.62
D	Height 3	94.35	94.43	94.35	94.41	94.49	94.4	94.62	94.42	94.41	94.5
E	Height 4	94.47	94.45	94.37	94.46	94.46	94.54	94.46	94.37	94.42	94.3
F	Average Height	94.41	94.4325	94.4125	94.39	94.4975	94.435	94.4875	94.4425	94.44	94.4525
G	Diameter 1	149.92	150.14	150.14	149.94	150.07	149.98	150.06	150.04	149.95	150.09
Н	Diameter 2	149.98	150.09	150.13	149.97	150.07	149.99	150.07	150.04	150.02	150.23
I	Average Diameter	149.95	150.115	150.135	149.955	150.07	149.985	150.065	150.04	149.985	150.16
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.285	2.274	2.275	2.287	2.276	2.281	2.276	2.281	2.281	2.276
K	Air Voids [(G _{mm} -J)/G _{mm}]	8.9	9.3	9.3	8.8	9.2	9.0	9.2	9.0	9.0	9.2
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3808.9	3801.3	3802.1	3812.6	3803.6	3805.5	3803.6	3808.4	3805.9	
В	Submerged Mass	2203.3	2196.7	2197.7	2207.1	2206.8	2205	2202.5	2203.1	2204.1	2200.5
С	SSD Mass	3826.4	3822.4	3823.2	3831.1	3828.5	3829.6	3823.7	3828.1	3827.3	3826.5
D	G _{mb} [A/(C-B)]	2.347	2.338	2.339	2.348	2.345	2.342	2.346	2.344	2.345	2.341
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.4	6.7	6.7	6.4	6.4	6.6	6.4	6.5	6.5	6.6

I-94 Ann Arbor

Project Number: Location: Contractor: Mix: Gradation: SMA

2.515 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3757.4	3758.7	3750	3753.8	3759.2	3756.3	3754.7	3757	3756.8	3757.7
В	Height 1	94.24	94.11	94.37	94.33	94.46	94.34	94.38	94.23	94.26	94.27
С	Height 2	94.3	94.3	94.36	94.59	94.23	94.41	94.23	94.3	94.45	94.25
D	Height 3	94.03	94.3	94.17	95.16	94.07	94.17	94.21	94.36	94.4	94.34
E	Height 4	93.84	94.25	94.37	94.39	94.26	94.06	94.36	94.37	94.25	94.53
F	Average Height	94.1025	94.24	94.3175	94.6175	94.255	94.245	94.295	94.315	94.34	94.3475
G	Diameter 1	150.01	150.12	150	149.98	149.93	149.96	150.15	149.93	149.94	150.04
Н	Diameter 2	150.25	150.16	150.06	150.2	149.9	149.95	150.06	149.98	149.92	150.07
1	Average Diameter	150.13	150.14	150.03	150.09	149.915	149.955	150.105	149.955	149.93	150.055
J	$G_{mb} [A/(F^*\pi^*l^2/4)]$	2.256	2.253	2.249	2.242	2.259	2.257	2.250	2.256	2.256	2.252
K	Air Voids [(G _{mm} -J)/G _{mm}]	10.3	10.4	10.6	10.8	10.2	10.3	10.5	10.3	10.3	10.5
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3757.4	3758.7	3750	3753.8	3759.2	3756.3	3754.7	3757	3756.8	3757.7
В	Submerged Mass	2197.4	2198.4	2191.2	2189.1	2192.4	2190.1	2189.2	2189.5	2198.8	2186.8
С	SSD Mass	3786.3	3787.8	3783.2	3784.4	3788	3782.5	3783.4	3782.8	3789.2	3781.6
D	G _{mb} [A/(C-B)]	2.365	2.365	2.356	2.353	2.356	2.359	2.355	2.358	2.362	2.356
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.0	6.0	6.3	6.4	6.3	6.2	6.4	6.2	6.1	6.3

Phase II – 150mm Superpave Specimens for Dynamic Modulus (Parametric Study)

			S' _{om} 5																
Project I- Gmm 2	I-196 Grand Rapids 2.499																		
H ₂ O Temp:			Č		-														
		Saturate	ed Surrace	Saturated Surrace Dry Method															
Sample		1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18
A) Dry Mass		6809.1	6816.0	6815.2	6814.0	6820.3	6813.4	6816.7	6815.1	6809.2	6812.4	6813.1	6816.5	6822.2	6813.5	6816.1	6:6089	6815.1	6820.1
B) Submerged Mass	35	3899.4	3903.5	3903.8	3914.3	3906.0	3910.5	3906.7	3910.4	3907.4	3916.8	3914	3910.4	3910.5	3909.6	3908.1	3911.9	3907.5	3907
C) SSD Mass		6853.2	6853.7	6856.7	6865.9	9:0989	6863.7	6870.2	6860.1	6.0989	6863.6	6864.4	6861.8	6861.4	6829	6863.4	6858.2	6861.6	6859.6
D) G _{mb} [A/(C-B)]		2.305	2.310	2.308	2.309	2.308	2.307	2.300	2.310	2.305	2.312	2.309	2.310	2.312	2.310	2.306	2.311	2.307	2.310
E) Air Voids [(G _{mm} -D)/G _{mm}]		7.8%	7.5%	7.6%	7.6%	7.6%	7.7%	8.0%	7.5%	7.7%	7.5%	7.6%	%9'2	7.5%	%9'.	7.7%	7.5%	7.7%	%9'2
																			1

			S _{mb}																
Project Gmm	I-75 Clarkston 2.487																		
H ₂ O Temp:																			
		Saturat	ed Surface	Saturated Surface Dry Method	_														
Sample		1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18
A) Dry Mass		6741.4	6742.7	6753.5	6741.6	6751.4	6743.0	6748.8	6749.6	6748.3	6750.9	6745.1	6747.3	6749.9	6752.1	6742.3	6746.8	6749.1	6748.4
B) Submerged Mass	Mass	3842.8	3842.0	3861.5	3849.1	3860.2	3853.8	3853.4	3852.7	3857	3855.5	3850.6	3856.5	3855.5	3860.8	3851.5 3850.3	3850.3	3860.1	3847.9
C) SSD Mass		6783.4	6781.2	6799.2	6786.8	6792.1	6785.2	6789.3	6791.4	6791	6792.8	6785.5	6787.9	6790.5	6796.8	6785.3	6787.6	6793.9	6784.9
D) G _{mb} [A/(C-B)]		2.293	2.294	2.299	2.295	2.303	2.300	2.299	2.297	2.300	2.298	2.298	2.302	2.300	2.300	2.298	2.297	2.300	2.298
E) Air Voids [(G _{mm} -D)/G _{mm}]	m]	7.8%	7.8%	7.6%	7.7%	7.4%	7.5%	%9.2	7.6%	7.5%	%9:2	7.6%	7.4%	7.5%	7.5%	%9.7	%9.7	7.5%	7.6%

Phase II – 100mm Superpave Specimens for Dynamic Modulus (Parametric Study) Cut and Cored from 150mm Diameter Superpave Specimens

9	2855.1	151.54	151.55	151.47	151.53	151.5225	101.13	100.93	101.04	100.96	101.06	101.05	101.0283	2.351	5.9		18	2855.1	1645.2	2866.8	2.337	6.5
17	2855.3	151.43	151.34	151.43	151.53	151.4325	101	101.03	101.05	101.03	101.07	101.01	101.0317	2.352	5.9		17	2855.3	1645.6	2866.7	2.338	6.4
16	2862.7	151.92	151.69	151.55	151.53	151.6725	101.07	100.96	101.06	101.02	101.08	101.05	101.04	2.354	5.8		16	2862.7	1652.3	2874	2.343	6.2
15	2822.8	151.55	151.45	151.55	151.59	151.535	101.07	101.04	101.05	101.03	101.02	101.09	101.05	2.350	0.9		15	2855.8	1645.4	2866.6	2.339	6.4
4	2858.5	151.45	151.42	151.5	151.42	151.4475	101.07	101.01	101.12	101.09	101.09	101.06	101.0733	2.352	5.9		14	2858.5	1648.2	2868.9	2.342	6.3
5	2859.4	151.52	151.41	151.4	151.63	151.49	101.05	101.08	101.03	101.09	101.12	101.06	101.0717	2.353	5.9		13	2859.4	1648.6	2869.3	2.342	6.3
17	2855.6	151.38	151.44	151.45	151.33	151.4	101.14	101.05	101.05	101.02	101.21	101.09	101.0933	2.350	0.9		12	2855.6	1645.4	2865.9	2.340	6.4
=	2861.4	151.49	151.34	151.37	151.44	151.41	101.09	101.1	101.06	101.06	101.15	101.04	101.0833	2.355	5.8		11	2861.4	1651.2	2871.8	2.344	6.2
9	2858.7	151.33	151.33	151.27	151.44	151.3425	101.15	101.05	101.13	100.97	101.15	101.04	101.0817	2.354	5.8		10	2858.7	1650.3	2869.8	2.344	6.2
ത	2849.6	151.23	151.44	151.25	151.43	151.3375	101.12	101.1	101.05	101.07	101.1	101.1	101.09	2.346	6.1		6	2849.6	1640.8	2860.6	2.336	6.5
œ	2857.3	151.45	151.47	151.66	151.43	151.5025	101.08	101.08	100.99	101.03	101.1	101.05	101.055	2.351	5.9		8	2857.3	1647.3	2868.2	2.340	6.3
7	2846.9	151.37	151.47	151.43	151.42	151.4225	101	101.07	101	101.13	101.08	101.03	101.0517	2.344	6.2		7	2846.9	1638.1	2859.6	2.331	6.7
9	2853.9	151.32	151.44	151.34	151.61	151.4275	101.04	101.05	101	101.13	101.06	101	101.0467	2.350	6.0		9	2853.9	1645	2866	2.337	6.5
2	2854.5	151.39	151.36	151.41	151.41	151.3925	101.08	101.06	101.02	101.07	101.08	101.02	101.055	2.351	5.9		2	2854.5	1644.1	2866	2.336	6.5
4	2850	151.52	151.34	151.27	151.51	151.41	101.02	101.09	101.02	101.03	101.08	101.01	101.0417	2.347	6.1		4	2850	1643.5	2863.8	2.335	6.5
က	2848.9	151.23	151.18	151.46	151.37	151.31	101.01	101.1	101.06	101.03	101.16	101.02	101.0633	2.347	6.1		3	2848.9	1639.4	2859.6	2.335	9.9
2	2847.9	151.35	151.31	151.36	151.48	151.375	100.98	101.07	100.98	101.02	101.06	101.03	101.0233	2.347	6.1		7	2847.9	1639.6	7860	2.334	9.9
_	2842.8	151.3	151.43	151.41	151.21	151,3375	100.98	101.09	100.98	100.97	101.01	101.01	101.0067	2.344	6.2		1	2842.8	1635.5	2825.5	2.330	8.9
Sample	Dry Mass	Height 1	Height 2	Height 3	Height 4	Average Height	Top Diameter 1	Top Diameter 2	Middle Diameter 1	Middle Diameter 2	Bottom Diameter 1	Bottom Diameter 2	Average Diameter	$G_{mb} [A/(F^*\pi^*l^2/4)]$	Air Voids [(G _{mm} -J)/G _{mm}]		Sample	Dry Mass	Submerged Mass	SSD Mass	G _{mb} [A/(C-B)]	Air Voids [(G _{mm} -D)/G _{mm}]
	٧	В	ပ	٥	В	ட	9	Н					-	_	Х			A	В	C	Q	ш

I-75 Clarkston

Project Number: Location: Contractor: Mix: Gradation:

2.487

_	_			_						_	_											
18	2847.2	151.35	151.28	151.43	151.56	151.405	101.02	101.15	101.01	101.05	101.23	101.03	101.08	2.343	5.8		18	2847.2	1637.1	2857.4	2.333	6.2
17	2843.7	151.2	151.68	151.26	151.67	151.4525	100.94	100.66	100.69	101.13	100.99	101.04	100.91	2.348	5.6		17	2843.7	1638.3	2854.4	2.338	6.0
16	2841.1	151.48	151.56	151.36	151.43	151.4575	101.08	100.93	100.99	100.93	101.13	100.94	101.00	2.341	5.9		16	2841.1	1632.1	2852.2	2.329	6.4
15	2835.9	151.4	151.37	151.26	151.37	151.35	101.1	100.96	101.07	100.99	100.95	101.12	101.03	2.337	0.9		15	2835.9	1627.6	2846.9	2.326	6.5
14	2847.3	151.22	151.38	151.4	151.5	151.375	101.05	101.02	101.02	101.11	101.16	100.98	101.06	2.345	2.7		14	2847.3	1637.9	2857.1	2.335	6.1
13	2840.2	151.3	151.21	151.34	151.41	151.315	101.03	100.96	101.01	100.96	100.95	101.11	101.00	2.343	5.8		13	2840.2	1631	2849.5	2.331	6.3
12	2847.9	151.13	151.14	151.33	151.6	151.3	101.09	101.04	100.97	101.04	100.94	101.07	101.03	2.348	9.5		12	2847.9	1638.9	2858	2.336	6.1
11	2840.1	151.72	151.64	151.25	151.33	151.485	101.01	100.55	100.86	100.98	101	101.01	100.90	2.345	2.7		11	2840.1	1634.8	2852	2.333	6.2
10	2842.8	151.45	151.36	151.16	151.15	151.28	101.1	100.96	101	101.01	100.98	100.97	101.00	2.345	2.7		10	2842.8	1630.3	2850.4	2.330	6.3
6	2859.8	151.69	151.67	152.02	151.87	151.8125	101.11	100.98	101.03	100.93	101.04	101.03	101.02	2.350	5.5		6	2859.8	1646.1	2870.1	2.336	6.1
8	2829.7	151.51	151.32	151.4	151.44	151.4175	100.96	101.09	101.05	101.13	100.99	101.01	101.04	2.331	6.3		8	2829.7	1621.2	2840.3	2.321	6.7
7	2841.5	151.31	151.51	151.4	151.26	151.37	101.08	101.02	101.12	100.99	100.98	101.04	101.04	2.341	5.9		7	2841.5	1633.3	2852.4	2.331	6.3
9	2839.3	151.27	151.33	151.64	151.47	151.4275	100.99	101.02	100.95	101.03	101.04	100.93	100.99	2.341	5.9		9	2839.3	1629.3	2849.6	2.327	6.4
2	2832.3	151.33	151.34	151.2	151.38	151.3125	101.03	101.08	100.99	100.99	101	101.01	101.02	2.336	6.1		2	2832.3	1626	2843.9	2.326	6.5
4	2827.7	151.39	151.38	151.43	151.26	151.365	101.07	100.97	101.01	100.99	100.95	101.06	101.01	2.331	6.3		4	2827.7	1620.5	2838.8	2.321	6.7
3	2840.5	151.4	151.45	151.39	151.38	151.405	101.01	101.11	100.98	101.07	101.03	101.06	101.04	2.340	6.3		3	2840.5	1632.8	2852.4	2.329	6.4
2	2827.4	151.41	151.57	151.42	151.5	151.475	100.99	101.01	100.99	100.99	101.05	100.97	101.00	2.330	6.3		2	2827.4	1619.5	2838.5	2.319	6.7
1	2828.9	151.45	151.22	151.2	151.4	151.3175	101.28	101.04	101.03	101	100.97	101.1	101.07	2.330	6.3		1	2828.9	1623.1	2842.5	2.320	6.7
Sample	Dry Mass	Height 1	Height 2	Height 3	Height 4	Average Height	Top Diameter 1	Top Diameter 2	Middle Diameter 1	Middle Diameter 2	Bottom Diameter 1	Bottom Diameter 2	Average Diameter	$G_{mb}[A/(F^*\pi^*l^2/4)]$	Air Voids [(G _{mm} -J)/G _{mm}]		Sample	Dry Mass	Submerged Mass	SSD Mass	G _{mb} [A/(C-B)]	Air Voids [(G _{mm} -D)/G _{mm}]
	A	В	၁	Δ	ш	ட	9	I					_	٦	Х			A	В	၁	O	ш

Phase II – 150mm Superpave Specimens for Dynamic Modulus Testing

Project Number: Location:

M-50 Dundee

Contractor:

3 E 1 Gradation:

 G_{mm} 2.52

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6695.8	6614.4	6693.8	6622	6621.5	6677.9	6619.6	6682.8	6622.6	6623.73
В	Height 1	168.31	168.92	168.04	168.35	168.21	168.53	168.4	168.24	168.51	168.74
С	Height 2	168.4	168.59	167.93	168.36	168.52	168.72	168.65	168.09	168.45	168.74
D	Height 3	168.15	168.68	167.81	168.5	168.42	168.43	168.63	168.54	168.34	168.57
E	Height 4	168.39	169.07	168.04	168.47	168.53	168.72	168.82	168.46	168.08	168.47
F	Average Height	168.3125	168.815	167.955	168.42	168.42	168.6	168.625	168.3325	168.345	168.63
G	Diameter 1	150.61	150.61	150.18	150.91	150.49	150.36	150.77	150.13	150.76	150.46
Н	Diameter 2	150.58	150.58	150.42	150.41	150.63	150.38	150.63	150.03	151.11	150.27
I	Average Diameter	150.595	150.595	150.3	150.66	150.56	150.37	150.7	150.08	150.935	150.365
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.233	2.200	2.246	2.206	2.208	2.230	2.201	2.244	2.199	2.212
K	Air Voids [(G _{mm} -J)/G _{mm}]	11.4	12.7	10.9	12.5	12.4	11.5	12.7	10.9	12.8	12.2
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6695.8	6614.4	6693.8	6622	6621.5	6677.9	6619.6	6682.8	6622.6	6623.73
В	Submerged Mass	3852.7	3840.2	3848.4	3839	3865.1	3856.8	3843.8	3890	3847.1	3871.1
С	SSD Mass	6738.2	6679.2	6728.1	6695.3	6695.5	6732.5	6699.6	6750.3	6700.8	6701.8
D	G _{mb} [A/(C-B)]	2.320	2.330	2.324	2.318	2.339	2.322	2.318	2.336	2.321	2.340
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.9	7.5	7.8	8.0	7.2	7.8	8.0	7.3	7.9	7.1

Project Number: Location: M-36 Pinckney

Contractor: Mix: Gradation:

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6611.6	6616	6705.6	6617	6713.5	6715.2	6714.6	6707.6	6611.5	6711.9
В	Height 1	169.03	169.2	169.26	169.23	169.31	169.3	169.38	169.23	169.29	169.27
С	Height 2	169.02	169.2	169.38	169.07	169.28	169.32	169.34	169.62	169.05	169.26
D	Height 3	169.3	169.08	169.27	169.32	169.46	169.34	169.21	169.34	169.19	169.32
E	Height 4	169.08	169.04	169.25	169.26	169.56	169.26	169.17	169.25	169.33	169.25
F	Average Height	169.1075	169.13	169.29	169.22	169.4025	169.305	169.275	169.36	169.215	169.275
G	Diameter 1	150.21	150.12	150.11	150.08	150.16	150.14	150.02	150.02	150.13	150.07
Н	Diameter 2	150.06	150.14	150.03	150.25	150.24	150.26	150.02	150.08	150.14	149.97
1	Average Diameter	150.135	150.13	150.07	150.165	150.2	150.2	150.02	150.05	150.135	150.02
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.208	2.210	2.239	2.208	2.237	2.239	2.244	2.240	2.207	2.243
K	Air Voids [(G _{mm} -J)/G _{mm}]	12.0	12.0	10.8	12.1	10.9	10.9	10.6	10.8	12.1	10.7
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6611.6	6616	6705.6	6617	6713.5	6715.2	6714.6	6707.6	6611.5	6711.9
В	Submerged Mass	3835.5	3830.9	3873.3	3835.5	3876.9	3885	3883.8	3865.6	3843.1	3870.1
С	SSD Mass	6681.9	6682.2	6763.4	6681.2	6769.9	6765.8	6775.3	6764.5	6687.4	6755
D	G _{mb} [A/(C-B)]	2.323	2.320	2.320	2.325	2.321	2.331	2.322	2.314	2.324	2.327
Е	Air Voids [(G _{mm} -D)/G _{mm}]	7.5	7.6	7.6	7.4	7.6	7.2	7.5	7.9	7.4	7.3

M-45 Grand Rapids

Project Number: Location: Contractor: Mix: Gradation:

2.513 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6877.6	6876.8	6879.6	6874.6	6877.6	6875.6	6880.3	6878.9	6886.1	6878.9
В	Height 1	168.91	168.49	168.81	168.65	168.72	168.97	168.64	168.82	168.57	168.73
С	Height 2	168.63	168.73	169.05	169.04	168.77	168.78	168.91	168.73	168.94	168.72
D	Height 3	168.66	168.64	168.9	168.84	169.11	168.66	168.86	168.65	168.9	168.84
E	Height 4	168.84	168.6	168.68	168.7	168.94	168.7	168.61	168.81	168.75	169.26
F	Average Height	168.76	168.615	168.86	168.8075	168.885	168.7775	168.755	168.7525	168.79	168.8875
G	Diameter 1	149.99	149.9	149.93	149.93	150.01	150.01	149.93	149.97	149.98	150.11
Н	Diameter 2	150.02	149.97	150	149.94	149.93	149.98	149.99	149.91	150.05	149.97
I	Average Diameter	150.005	149.935	149.965	149.935	149.97	149.995	149.96	149.94	150.015	150.04
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.306	2.310	2.307	2.307	2.305	2.305	2.308	2.309	2.308	2.304
K	Air Voids [(G _{mm} -J)/G _{mm}]	8.2	8.1	8.2	8.2	8.3	8.3	8.1	8.1	8.2	8.3
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6877.6	6876.8	6879.6	6874.6	6877.6	6875.6	6880.3	6878.9	6886.1	6878.9
В	Submerged Mass	3976.8	3973.5	3973.1	3963.4	3969.4	3972.4	3973.3	3967.3	3954.6	3969.9
С	SSD Mass	6922	6922.8	6925.8	6915.4	6916.9	6919.1	6924.6	6918.4	6916	6923.7
D	G _{mb} [A/(C-B)]	2.335	2.332	2.330	2.329	2.333	2.333	2.331	2.331	2.325	2.329
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.1	7.2	7.3	7.3	7.1	7.1	7.2	7.2	7.5	7.3

M-21 St. Johns

Project Number: Location: Contractor: Mix: Gradation:

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6550.4	6553.7	6555.1	6551	6553.3	6556.7	6549.6	6559	6547.5	6557.7
В	Height 1	168.71	168.56	168.44	168.62	169.93	168.94	168.42	168.46	168.91	168.88
С	Height 2	169.27	168.44	168.36	168.48	169.93	168.82	168.47	168.34	169.14	168.54
D	Height 3	168.8	169.35	168.75	168.33	168.77	168.74	168.54	168.44	169.02	169.12
E	Height 4	168.88	168.86	168.44	168.96	168.91	168.68	168.6	168.69	168.88	169.66
F	Average Height	168.915	168.8025	168.4975	168.5975	169.385	168.795	168.5075	168.4825	168.9875	169.05
G	Diameter 1	150.03	150.25	150.37	150.86	150.24	150.06	150.37	150.52	150.3	150.26
Н	Diameter 2	150.07	150.32	150.08	150.58	150.25	150.2	150.18	150.23	150.2	150.2
I	Average Diameter	150.05	150.285	150.225	150.72	150.245	150.13	150.275	150.375	150.25	150.23
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.193	2.189	2.195	2.178	2.182	2.194	2.191	2.192	2.185	2.188
K	Air Voids [(G _{mm} -J)/G _{mm}]	11.9	12.1	11.8	12.5	12.3	11.8	12.0	11.9	12.2	12.1
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6551.2	6553.5	6556.1	6551.7	6554		6550	,	6547.7	6558.1
В	Submerged Mass	3788.9	3784.8	3781.1	3773.2	3792.3	3797.2	3787.2	3781	3789.8	3799
С	SSD Mass	6645.4	6647.7	6641.2	6631.2	6640.5	6643.3	6628.2	6643.6	6632.2	6644.7
D	G _{mb} [A/(C-B)]	2.293	2.289	2.292	2.292	2.301	2.304	2.306	2.292	2.304	2.305
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.9	8.0	7.9	7.9	7.5	7.4	7.4	7.9	7.4	7.4

M-84 Saginaw

Project Number: Location: Contractor: Mix: Gradation:

2.543 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6946.1	6945.2	6947.1	6948.9	6948	6951.5	6944.6	6944.4	6948.1	6952.9
В	Height 1	169.16	168.87	169.98	169.94	169.34	168.71	168.86	168.86	168.88	169.09
С	Height 2	168.87	168.93	168.84	168.92	169.12	168.71	169.36	168.96	168.69	169.04
D	Height 3	169.05	168.68	169.12	169.91	168.82	169.14	169.09	169.9	169.04	168.63
E	Height 4	168.7	168.64	169.17	169.02	169.15	168.9	169.08	169.21	169.13	169.11
F	Average Height	168.945	168.78	169.2775	169.4475	169.1075	168.865	169.0975	169.2325	168.935	168.9675
G	Diameter 1	149.93	149.5	149.68	150.08	149.31	149.83	149.96	149.45	149.86	149.8
Н	Diameter 2	149.85	150.32	149.81	150.27	149.76	149.83	149.75	149.82	149.76	149.66
I	Average Diameter	149.89	149.91	149.745	150.175	149.535	149.83	149.855	149.635	149.81	149.73
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.330	2.331	2.330	2.315	2.339	2.335	2.329	2.333	2.333	2.337
K	Air Voids [(G _{mm} -J)/G _{mm}]	8.4	8.3	8.4	9.0	8.0	8.2	8.4	8.2	8.2	8.1
	0	4	0	0	4	-				0	40
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	6947.1	6945.8			6948.6		6945.2	6945		6953.5
В	Submerged Mass	4047.2	4046.6	4047.9	4045.9	4050.8	4055	4039.5	4053.4	4033.6	4063.8
С	SSD Mass	6992.1	6991.1	6992.3	6991.9	6992.7	6991.9	6987.3	6993.9	6979.1	6997.7
D	G _{mb} [A/(C-B)]	2.359	2.359	2.360	2.359	2.362	2.367	2.356	2.362	2.359	2.370
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.2	7.2	7.2	7.2	7.1	6.9	7.4	7.1	7.2	6.8

BL I-96 Howell

Project Number: Location: Contractor: Mix: Gradation:

 G_{mm} 2.501

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6892.8	6890.7	6887	6883.7	6885.9	6886.7	6889.1	6893.8	6892.8	6883.4
В	Height 1	169.75	169.46	169.53	169.49	169.48	169.71	169.85	169.4	169.52	169.42
С	Height 2	169.42	169.73	169.42	169.69	169.33	169.39	170.2	169.56	169.59	169.84
D	Height 3	169.65	169.81	169.45	169.37	169.35	169.56	169.77	169.59	169.58	169.57
E	Height 4	169.36	170.04	169.76	169.59	169.42	169.67	169.68	169.41	169.49	169.59
F	Average Height	169.545	169.76	169.54	169.535	169.395	169.5825	169.875	169.49	169.545	169.605
G	Diameter 1	149.99	149.84	150.04	149.98	150.08	150.14	149.87	150	149.45	150.05
Н	Diameter 2	150.02	150.16	149.94	150.04	150.13	150.04	149.85	150.07	149.94	150.01
I	Average Diameter	150.005	150	149.99	150.01	150.105	150.09	149.86	150.035	149.695	150.03
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.300	2.297	2.299	2.297	2.297	2.295	2.299	2.301	2.310	2.296
K	Air Voids [(G _{mm} -J)/G _{mm}]	8.0	8.2	8.1	8.1	8.2	8.2	8.1	8.0	7.6	8.2
	Sample	1	2	3	4	5	6	7	8	9	10
А	Dry Mass	6893.2	6891	6888.1	6884.1	6885.9	6886.7	6889.1	6893.8	6892.8	6883.4
В	Submerged Mass	3944.4	3934.9	3936.8	3938.8	3949.6	3952.1	3954.6	3953.3	3958.2	3945.1
С	SSD Mass	6906.7	6903.3	6900.4	6901.1	6916.6	6917.3	6916.2	6919	6920.9	6903.6
D	G _{mb} [A/(C-B)]	2.327	2.321	2.324	2.324	2.321	2.323	2.326	2.325	2.327	2.327
Е	Air Voids [(G _{mm} -D)/G _{mm}]	7.0	7.2	7.1	7.1	7.2	7.1	7.0	7.1	7.0	7.0

M-21 Owosso

Project Number: Location: Contractor: Mix: Gradation:

2.47 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6799.3	6792.1	6796.4	6794.6	6797	6797.4	6797.4	6797.8	6797.1	6797.2
В	Height 1	169.14	169.3	169.17	169.29	169.52	169.56	169.36	169.53	169.27	169.39
С	Height 2	169.29	169.47	169.17	169.22	169.32	169.33	169.41	169.28	169.38	169.43
D	Height 3	169.42	169.3	169.26	169.4	169.13	169.18	169.27	169.2	169.39	169.26
E	Height 4	169.33	169.43	169.32	169.48	169.36	169.41	169.19	169.45	169.25	169.21
F	Average Height	169.295	169.375	169.23	169.3475	169.3325	169.37	169.3075	169.365	169.3225	169.3225
G	Diameter 1	149.93	149.9	150.04	149.89	149.97	150	149.94	149.96	150	150.03
Н	Diameter 2	149.86	150.14	149.91	149.89	149.86	149.98	149.94	149.88	150.02	149.91
I	Average Diameter	149.895	150.02	149.975	149.89	149.915	149.99	149.94	149.92	150.01	149.97
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.276	2.269	2.273	2.274	2.274	2.271	2.274	2.274	2.271	2.273
K	Air Voids [(G _{mm} -J)/G _{mm}]	7.9	8.2	8.0	7.9	7.9	8.0	7.9	7.9	8.0	8.0
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6799.3	6792.1	6796.4	6794.6	6797	6797.4	6797.4	6797.8	6797.1	6797.2
В	Submerged Mass	3861.6	3862.9	3859.7	3850.2	3853.9	3857	3861.4	3853.8	3848.6	3858.3
С	SSD Mass	6819.6	6824.6	6823.1	6820.3	6817.7	6821.4	6824	6816.5	6815.9	6822.1
D	G _{mb} [A/(C-B)]	2.299	2.293	2.293	2.288	2.293	2.293	2.294	2.294	2.291	2.293
Е	Air Voids [(G _{mm} -D)/G _{mm}]	6.9	7.2	7.1	7.4	7.2	7.2	7.1	7.1	7.3	7.1

M-66 Battle Creek

Project Number: Location: Contractor: Mix: Gradation:

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6840.3	6836.2	6841	6842.3	6841.4	6844	6845.1	6845.8	6844.9	6847
В	Height 1	169.37	169.47	169.42	169.06	169.27	169.31	169.04	169.11	169.14	169.1
С	Height 2	169.68	169.44	169.46	169.19	169.17	169.26	169.08	169.17	169.01	169.18
D	Height 3	169.4	169.29	169.48	169.08	169.22	169.34	169.43	169.29	169.3	169.29
E	Height 4	169.34	169.57	169.18	169.05	169.17	169.32	169.14	169.27	169.21	169.21
F	Average Height	169.4475	169.4425	169.385	169.095	169.2075	169.3075	169.1725	169.21	169.165	169.195
G	Diameter 1	149.99	150.01	149.98	149.94	149.89	149.96	150.05	150.06	150.03	150.02
Н	Diameter 2	150.01	150.02	150.05	149.89	150.11	149.94	150.04	149.71	150.08	149.92
1	Average Diameter	150	150.015	150.015	149.915	150	149.95	150.045	149.885	150.055	149.97
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.284	2.283	2.285	2.292	2.288	2.289	2.288	2.293	2.288	2.291
K	Air Voids [(G _{mm} -J)/G _{mm}]	7.5	7.6	7.5	7.2	7.4	7.3	7.4	7.2	7.4	7.2
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6841.2	6838.9	6841.7	6843.3	6842.2	6844.7	6845.8	6846.8	6845.7	6851.8
В	Submerged Mass	3896.7	3899.9	3901.2	3894.4	3899.5	3897.5	3906.7	3911.8	3901.9	3904.8
С	SSD Mass	6861.8	6864.5	6857.7	6855.6	6859.3	6859.5	6867.9	6866.4	6861.3	6866.6
D	G _{mb} [A/(C-B)]	2.307	2.307	2.314	2.311	2.312	2.311	2.312	2.317	2.313	2.313
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.6	6.6	6.3	6.4	6.4	6.4	6.4	6.2	6.3	6.3

M-50 Dundee

Project Number: Location: Contractor: Mix: Gradation: 4 E 3

2.538 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6848	6842	6842.6	6845.6	6851.8	6840.2	6845.2	6849.1	6846.6	6842.4
В	Height 1	169.04	168.88	168.79	168.85	168.89	169.03	168.98	168.73	168.83	168.84
С	Height 2	168.84	168.87	169.09	168.88	168.83	168.76	169.01	168.89	169.02	168.8
D	Height 3	168.8	168.73	169.07	168.9	168.78	168.79	168.98	168.93	169.11	168.85
E	Height 4	168.86	168.93	168.89	168.82	168.83	168.98	168.85	168.83	168.93	168.85
F	Average Height	168.885	168.8525	168.96	168.8625	168.8325	168.89	168.955	168.845	168.9725	168.835
G	Diameter 1	149.98	150.02	150.05	149.95	150.02	149.98	150	149.8	150.02	149.96
Н	Diameter 2	150	150.01	149.92	150.04	149.98	150	149.98	149.93	150.11	149.94
	Average Diameter	149.99	150.015	149.985	149.995	150	149.99	149.99	149.865	150.065	149.95
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.295	2.293	2.292	2.294	2.297	2.292	2.293	2.300	2.291	2.295
K	Air Voids [(G _{mm} -J)/G _{mm}]	9.6	9.7	9.7	9.6	9.5	9.7	9.7	9.4	9.7	9.6
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6848	6842	6842.6	6845.6	6851.8	6840.2	6845.2	6849.1	6846.6	6842.4
В	Submerged Mass	3996.7	3995.1	3994.3	3993.8	3997.3	3995.4	3994.9	4001.4	3997.4	3995.2
С	SSD Mass	6905	6904.6	6903.8	6903.7	6904	6903.6	6901.3	6910.8	6904.5	6903.5
D	G _{mb} [A/(C-B)]	2.355	2.352	2.352	2.353	2.357	2.352	2.355	2.354	2.355	2.353
Е	Air Voids [(G _{mm} -D)/G _{mm}]	7.2	7.3	7.3	7.3	7.1	7.3	7.2	7.2	7.2	7.3

US-12 MIS

Project Number: Location: Contractor: Mix: Gradation:

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6755.5	6753.5	6754.9	6751.3	6752	6751.7	6653.8	6756.2	6752.7	6647.8
В	Height 1	169.15	169.28	169.31	169.57	169.3	169.42	169.38	169.17	169.22	169.27
С	Height 2	169.21	169.22	169.26	169.3	169.37	169.33	169.22	169.15	169.26	169.28
D	Height 3	169.2	169.16	169.24	169.62	169.24	169.24	169.07	169.4	169.39	169.31
E	Height 4	169.26	169.33	169.33	169.65	169.26	169.23	169.11	169.14	169.36	169.22
F	Average Height	169.205	169.2475	169.285	169.535	169.2925	169.305	169.195	169.215	169.3075	169.27
G	Diameter 1	150.01	150.1	150.19	150.42	150.05	150	150.04	150.12	150.4	150.05
Н	Diameter 2	150.06	150.05	150.11	150.24	150.25	149.98	149.93	150.09	150.04	150.03
I	Average Diameter	150.035	150.075	150.15	150.33	150.15	149.99	149.985	150.105	150.22	150.04
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.258	2.256	2.254	2.244	2.252	2.257	2.226	2.256	2.250	2.221
K	Air Voids [(G _{mm} -J)/G _{mm}]	9.3	9.4	9.5	9.9	9.6	9.4	10.6	9.4	9.7	10.8
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6755.5	6753.5	6754.9	6751.3	6752	6751.7	6653.8	6756.2	6752.7	6647.8
В	Submerged Mass	3877.8	3866.3	3863.6	3851.4	3870.7	3869.4	3838.3	3875	3870.8	3830
С	SSD Mass	6799.3	6794.2	6791.1	6785.1	6801.6	6796	6729.9	6800.4	6789.7	6725
D	G _{mb} [A/(C-B)]	2.312	2.307	2.307	2.301	2.304	2.307	2.301	2.309	2.313	2.296
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.2	7.4	7.4	7.6	7.5	7.4	7.6	7.3	7.1	7.8

M-59 Brighton

Project Number: Location: Contractor: Mix: Gradation:

2.503 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6671	6659.1	6667.5	6667.4	6657.1	6669.3	6664.7	6661.6	6661.9	6668.9
В	Height 1	168.59	168.56	168.85	168.71	168.72	168.88	168.71	168.82	168.75	169.08
С	Height 2	168.79	168.32	168.98	168.76	169.06	168.76	168.88	168.91	168.65	168.74
D	Height 3	168.88	168.86	168.58	169.04	169.09	168.55	168.94	168.99	168.63	168.65
E	Height 4	168.81	168.73	168.78	169.03	168.84	168.77	168.95	168.49	168.74	168.97
F	Average Height	168.7675	168.6175	168.7975	168.885	168.9275	168.74	168.87	168.8025	168.6925	168.86
G	Diameter 1	150.44	150.89	149.92	150.02	150.04	149.66	150.18	150.22	149.95	149.94
Н	Diameter 2	150.48	149.88	149.99	150.22	149.86	150.02	150.04	150.03	149.95	149.91
I	Average Diameter	150.46	150.385	149.955	150.12	149.95	149.84	150.11	150.125	149.95	149.925
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.223	2.223	2.237	2.230	2.232	2.241	2.230	2.229	2.236	2.237
K	Air Voids [(G _{mm} -J)/G _{mm}]	11.2	11.2	10.6	10.9	10.8	10.5	10.9	10.9	10.7	10.6
	Comple	4	2	3	4	5	6	7	8	9	10
	Sample	7	_	_	4	,	-		,	,	
A	Dry Mass	6670.9		6657.5							
В	Submerged Mass	3848.6	3845.8			3853.2	3847.4	3853			
С	SSD Mass	6717.5	6717.3	6715.4	6716	6716.2	6724.6	6721.3	6716.5	6713.8	6742.4
D	G _{mb} [A/(C-B)]	2.325	2.319	2.322	2.330	2.324	2.318	2.323	2.320	2.314	2.331
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.1	7.4	7.2	6.9	7.1	7.4	7.2	7.3	7.6	6.9

Michigan Ave. Dearborn

Project Number: Location: Contractor: Mix: Gradation: 3 E 10

 G_{mm} 2.493

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6719.5	6731	6724.4	6723.4	6729.9	6715.1	6728.8	6725.9	6709.9	6716.2
В	Height 1	169.17	169.35	169.19	169.21	169.07	169.49	169	169.3	168.75	169.02
С	Height 2	169.1	169.02	169	168.86	169.21	169.05	169.15	169.07	168.73	169.06
D	Height 3	169.24	169.41	168.89	169.31	169.02	169.31	169.05	169.35	169.05	169.04
E	Height 4	168.93	169.02	168.9	169.05	169.19	169.52	169.08	169.21	168.81	168.86
F	Average Height	169.11	169.2	168.995	169.1075	169.1225	169.3425	169.07	169.2325	168.835	168.995
G	Diameter 1	149.95	149.86	149.95	149.91	150.04	149.92	149.98	149.95	149.87	150.31
Н	Diameter 2	149.96	149.98	150.14	149.86	149.99	149.88	149.94	149.7	149.95	149.8
	Average Diameter	149.955	149.92	150.045	149.885	150.015	149.9	149.96	149.825	149.91	150.055
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.250	2.254	2.250	2.253	2.251	2.247	2.253	2.254	2.252	2.247
K	Air Voids [(G _{mm} -J)/G _{mm}]	9.8	9.6	9.7	9.6	9.7	9.9	9.6	9.6	9.7	9.9
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6719.5	6731	6724.4	6723.4	6729.9	6715.1	6728.8	6725.9	6709.9	6716.2
В	Submerged Mass	3879.5	3886.2	3877.6	3873.4	3875.8	3866.4	3881	3876.2	3853.2	3848.4
С	SSD Mass	6765.1	6771.8	6772.1	6763.6	6771.3	6760.4	6768.2	6768	6744.9	6750.1
D	G _{mb} [A/(C-B)]	2.329	2.333	2.323	2.326	2.324	2.320	2.331	2.326	2.320	2.315
Е	Air Voids [(G _{mm} -D)/G _{mm}]	6.6	6.4	6.8	6.7	6.8	6.9	6.5	6.7	6.9	7.2

Vandyke Detroit

Project Number: Location: Contractor: Mix: Gradation:

2.604 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	7127.5	7127.8	7129.1	7127.3	7125.1	7123.6	7153.8	7125.8	7124.8	7130.6
В	Height 1	169.09	169.08	169.02	169.18	169	169.14	169.3	169.05	169.25	169.12
С	Height 2	169.1	168.97	169.11	169.05	169.15	169.24	169.19	169.15	169.09	169.2
D	Height 3	169.29	169.03	169.28	169.04	169.17	169.08	169.01	169.33	169.08	169.47
E	Height 4	169.27	169.21	169.34	169.19	169.07	169.03	169.19	169.21	169.16	169.18
F	Average Height	169.1875	169.0725	169.1875	169.115	169.0975	169.1225	169.1725	169.185	169.145	169.2425
G	Diameter 1	150	150.05	150.06	150.1	150.01	150.01	150.25	150.13	150.03	150.01
Н	Diameter 2	150.06	150.06	149.98	150.1	150.04	149.98	150.05	150.05	150.01	150.07
I	Average Diameter	150.03	150.055	150.02	150.1	150.025	149.995	150.15	150.09	150.02	150.04
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.383	2.384	2.384	2.382	2.384	2.384	2.388	2.381	2.383	2.383
K	Air Voids [(G _{mm} -J)/G _{mm}]	8.5	8.5	8.5	8.5	8.5	8.5	8.3	8.6	8.5	8.5
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	7127.5	7127.8	7129.1	7127.3	7125.1	7123.6	7153.8	7125.8	7124.8	7130.6
В	Submerged Mass	4236.5	4229.2	4236.3	4235.1	4236.5	4234.7	4233.6	4222.9	4227.5	4225.1
С	SSD Mass	7171.1	7163.8	7165.9	7176.2	7168.3	7166.7	7173.1	7166.2	7164.7	7163.4
D	G _{mb} [A/(C-B)]	2.429	2.429	2.433	2.423	2.430	2.430	2.434	2.421	2.426	2.427
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.7	6.7	6.5	6.9	6.7	6.7	6.5	7.0	6.8	6.8

US-23 Heartland

Project Number: Location: Contractor: Mix: Gradation:

2.492 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6592.6	6704.4	6702.2	6586.2	6705	6699	6703.9	6705.4	6708.5	6586.9
В	Height 1	169.04	169.12	169.23	169.12	169.07	169.05	168.91	169.01	168.88	169.07
С	Height 2	169.33	169.15	169.13	168.76	168.95	168.95	169.32	169.17	168.96	169.14
D	Height 3	169.19	169.13	168.94	168.86	168.83	169.07	169.07	169.28	169.07	169.25
E	Height 4	169.25	169.2	169.25	169.53	169.14	169.08	168.76	169.1	169.07	169.28
F	Average Height	169.2025	169.15	169.1375	169.0675	168.9975	169.0375	169.015	169.14	168.995	169.185
G	Diameter 1	150.04	150.06	149.92	150.04	150.06	150.23	150.01	150.03	150.1	150.16
Н	Diameter 2	150.19	150.13	150	149.4	150.03	150.16	149.94	150.32	150.09	150.14
I	Average Diameter	150.115	150.095	149.96	149.72	150.045	150.195	149.975	150.175	150.095	150.15
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.201	2.240	2.244	2.213	2.244	2.237	2.245	2.238	2.244	2.199
K	Air Voids [(G _{mm} -J)/G _{mm}]	11.7	10.1	10.0	11.2	10.0	10.2	9.9	10.2	10.0	11.8
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6721.1	6704.4	6702.2	6586.2	6705		6703.9	6705.4	6708.5	6586.9
В	Submerged Mass	3885.8	3882.5			3870.6	3849.1	3884.3	3863.7	3865.5	3856.5
С	SSD Mass	6769.2	6768.4	6769.3	6662.5	6773.9	6759.9	6767.7	6772.9	6764.5	6701
D	G _{mb} [A/(C-B)]	2.331	2.323	2.322	2.297	2.309	2.301	2.325	2.305	2.314	2.316
Е	Air Voids [(G_{mm} -D)/ G_{mm}]	6.5	6.8	6.8	7.8	7.3	7.6	6.7	7.5	7.1	7.1

I-75 Levering Rd.

Project Number: Location: Contractor: Mix: Gradation:

2.443 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6682.4	6687.5	6683.7	6684.6	6685.7	6681.6	6684.5	6680.5	6686.2	6686.1
В	Height 1	168.94	168.69	168.72	168.98	169.15	168.65	168.62	168.57	169.11	169.06
С	Height 2	168.63	168.81	168.92	169.06	168.81	168.51	168.89	168.94	168.57	168.43
D	Height 3	168.96	169.4	169.02	169.01	169.03	168.89	168.85	168.96	168.87	168.73
E	Height 4	168.88	168.97	169.82	168.81	169	169.05	169.15	168.58	169.22	168.95
F	Average Height	168.8525	168.9675	169.12	168.965	168.9975	168.775	168.8775	168.7625	168.9425	168.7925
G	Diameter 1	149.7	149.65	149.66	149.97	149.6	149.76	149.85	149.65	149.88	149.63
Н	Diameter 2	149.92	149.83	149.77	149.92	149.63	150.2	149.76	149.83	149.66	149.93
I	Average Diameter	149.81	149.74	149.715	149.945	149.615	149.98	149.805	149.74	149.77	149.78
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.245	2.247	2.245	2.240	2.250	2.241	2.246	2.248	2.246	2.248
K	Air Voids [(G _{mm} -J)/G _{mm}]	8.1	8.0	8.1	8.3	7.9	8.3	8.1	8.0	8.0	8.0
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6684.7	6689.8	6686.1	6685.8	6687.3	6682.9	6686.7	6682.7	6687.7	6687.8
В	Submerged Mass	3793.3	3793.4	3787.6	3768.2	3766.9	3783.7	3785	3776	3769.8	3784
С	SSD Mass	6719.7	6733	6722.8	6712.8	6716.6	6716.6	6716.5	6717.3	6714.9	6717.3
D	G _{mb} [A/(C-B)]	2.284	2.276	2.278	2.271	2.267	2.279	2.281	2.272	2.271	2.280
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.5	6.8	6.8	7.1	7.2	6.7	6.6	7.0	7.0	6.7

I-196 Grand Rapids

Project Number: Location: Contractor: Mix: Gradation:

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6814.9	6813.8	6793.8	6818.3	6812.5	6818.7	6814.1	6817.3	6812	6815
В	Height 1	169	170.4	169.66	169.67	169.41	169.27	169.26	169.44	169.64	169.33
С	Height 2	169.45	170.59	169.52	169.35	169.35	169.49	169.3	169.62	169.62	169.5
D	Height 3	169.93	170.35	169.85	169.27	169.5	169.44	169.29	169.68	170.09	169.46
E	Height 4	169.25	169.93	170.22	169.6	169.48	169.32	169.33	169.52	169.7	169.35
F	Average Height	169.4075	170.3175	169.8125	169.4725	169.435	169.38	169.295	169.565	169.7625	169.41
G	Diameter 1	150.06	150.22	150.2	150.04	150.23	150.07	150	150.05	150.05	149.96
Н	Diameter 2	150.02	150.07	150.12	150.01	149.99	149.96	149.99	150.06	150.18	149.95
	Average Diameter	150.04	150.145	150.16	150.025	150.11	150.015	149.995	150.055	150.115	149.955
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.275	2.260	2.259	2.276	2.272	2.278	2.278	2.273	2.267	2.278
K	Air Voids [(G _{mm} -J)/G _{mm}]	9.0	9.6	9.6	8.9	9.1	8.9	8.9	9.0	9.3	8.9
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6814.9		6793.8		6812.5		6814.1	6817.3		6815
В	Submerged Mass	3922.6	3914.3	3914.3	3926.4	3918.9	3935.3	3922.2	3921.6	3916	3926.4
С	SSD Mass	6870.5	6819.6	6863.9	6871.7	6868.8	6878.5	6865.1	6871.7	6878.5	6867.9
D	G _{mb} [A/(C-B)]	2.312	2.345	2.303	2.315	2.309	2.317	2.315	2.311	2.299	2.317
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.5	6.2	7.8	7.4	7.6	7.3	7.3	7.5	8.0	7.3

I-75 Clarkston

Project Number: Location: Contractor: Mix: Gradation:

2.487 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6747.8	6749.7	6736	6742.5	6750.5	6747.1	6742.7	6816.5	6746.2	6745.4
В	Height 1	169.42	169.03	169.11	169.17	169.19	169.13	169.09	169.26	169.16	169.18
С	Height 2	169.24	169.16	169.26	169.1	169.28	169.25	169.21	169.12	169.26	169.19
D	Height 3	168.99	169.12	169	169.22	169.28	169.05	169.02	169.02	169.25	169.33
E	Height 4	169.08	169.14	169.07	169.06	169.19	169.07	169.14	169.18	169.16	169.26
F	Average Height	169.1825	169.1125	169.11	169.1375	169.235	169.125	169.115	169.145	169.2075	169.24
G	Diameter 1	149.95	150.09	149.99	150.01	150.06	149.95	150.06	149.9	149.95	149.95
Н	Diameter 2	149.97	150.01	150.06	149.99	149.99	149.98	150.18	149.95	150.02	149.91
I	Average Diameter	149.96	150.05	150.025	150	150.025	149.965	150.12	149.925	149.985	149.93
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.258	2.257	2.253	2.256	2.256	2.259	2.253	2.283	2.257	2.258
K	Air Voids [(G _{mm} -J)/G _{mm}]	9.2	9.2	9.4	9.3	9.3	9.2	9.4	8.2	9.3	9.2
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6747.8	6749.7	6736	6742.5	6750.5	6747.1	6742.7	6816.5	6746.2	6745.4
В	Submerged Mass	3870.9	3871.2	3862.9	3860	3871.1	3869	3860.2	3924.3	3864.2	3861.6
С	SSD Mass	6788.2	6793.4	6785.3	6791.9	6793.8	6792.5	6787.6	6855.2	6793.8	6786.6
D	G _{mb} [A/(C-B)]	2.313	2.310	2.305	2.300	2.310	2.308	2.303	2.326	2.303	2.306
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.0	7.1	7.3	7.5	7.1	7.2	7.4	6.5	7.4	7.3

M-53 Detroit

Project Number: Location: Contractor: Mix: Gradation:

 G_{mm} 2.563

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6949.6	6947.4	6947.3	6943	6947.4	6937.7	6952.6	6949.7	6947.8	6951.3
В	Height 1	168.9	168.91	168.99	169.09	168.89	168.91	168.92	168.88	168.99	168.97
С	Height 2	169.08	169.08	169.19	168.79	169.27	169.16	168.92	169.14	169.2	168.92
D	Height 3	169.06	168.93	168.87	168.71	168.96	168.91	169.06	169.13	169.04	169.06
E	Height 4	168.9	168.97	168.71	168.88	168.76	168.79	168.83	169.06	168.84	168.78
F	Average Height	168.985	168.9725	168.94	168.8675	168.97	168.9425	168.9325	169.0525	169.0175	168.9325
G	Diameter 1	149.97	149.93	149.91	149.94	149.97	149.9	149.98	149.97	149.93	149.92
Н	Diameter 2	149.98	150.05	150.04	149.9	149.94	149.94	150	150.08	149.95	149.91
1	Average Diameter	149.975	149.99	149.975	149.92	149.955	149.92	149.99	150.025	149.94	149.915
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.328	2.327	2.328	2.329	2.328	2.326	2.329	2.326	2.328	2.331
K	Air Voids [(G _{mm} -J)/G _{mm}]	9.2	9.2	9.2	9.1	9.2	9.2	9.1	9.3	9.2	9.0
	Comple	1	2	3	4	5	6	7	8	9	10
_	Sample	6040.6	_	_		-	,		,	,	
A	Dry Mass	6949.6		6947.3		6947.4		6952.6		6947.8	
В	Submerged Mass	4083.9		4081.1	4084.2	4085.6				4076.7	4093.5
С	SSD Mass	7000.7	6995.4	6996.5	6995.2	7001.5	6989.8	7006.8	7005.2	7000.9	7003
D	G _{mb} [A/(C-B)]	2.383	2.383	2.383	2.385	2.383	2.379	2.390	2.389	2.376	2.389
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.0	7.0	7.0	6.9	7.0	7.2	6.7	6.8	7.3	6.8

Michigan Ave. Dearborn

Project Number: Location: Contractor: Mix: Gradation: 4 E 10

2.485 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6703.2	6704.4	6700	6705.5	6701.2	6700.8	6701.3	6704.4	6702.1	6701.8
В	Height 1	169.04	169.26	169.16	169.07	169.35	169.15	169.46	169.53	169	169.27
С	Height 2	169.58	169.18	169.08	169.92	169.59	169.33	169.33	169.63	169.19	169.24
D	Height 3	169.21	169.35	169.2	169.47	169.37	169.6	169.41	169.12	169.59	169.38
E	Height 4	169.37	169.34	169.67	169.58	169.45	169.49	169.5	169.47	169.61	169.35
F	Average Height	169.3	169.2825	169.2775	169.51	169.44	169.3925	169.425	169.4375	169.3475	169.31
G	Diameter 1	149.94	150.05	150.03	149.49	149.93	149.98	149.97	150.04	150.04	150.04
Н	Diameter 2	149.97	150.19	150.07	149.96	149.94	149.95	149.97	149.96	150.09	150.03
I	Average Diameter	149.955	150.12	150.05	149.725	149.935	149.965	149.97	150	150.065	150.035
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.242	2.238	2.238	2.247	2.240	2.240	2.239	2.239	2.238	2.239
K	Air Voids [(G _{mm} -J)/G _{mm}]	9.8	10.0	9.9	9.6	9.9	9.9	9.9	9.9	10.0	9.9
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6703.4	6704.1	6699.6	6705.9	6700.8	6701	6700.9	6704.7	6701.7	6702.3
В	Submerged Mass	3836	3839.8	3826.3	3841.4	3827.4	3826.5	3830.8	3831.8	3828.8	3840.7
С	SSD Mass	6753.4	6751.7	6736.5	6751	6738.9	6746	6745.1	6746	6743.3	6747.5
D	G _{mb} [A/(C-B)]	2.298	2.302	2.302	2.305	2.301	2.295	2.299	2.301	2.299	2.306
Е	Air Voids [(G _{mm} -D)/G _{mm}]	7.5	7.4	7.4	7.3	7.4	7.6	7.5	7.4	7.5	7.2

I-75 Toledo

Project Number: Location: Contractor: Mix: Gradation:

 G_{mm} 2.507

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6813.8	6818.3	6811.9	6809.6	6811.5	6809.8	6814.8	6811.8	6811.9	6812.9
В	Height 1	169.3	169.36	169.19	169.4	169.37	169.32	169.38	169.28	169.17	169.28
С	Height 2	169.33	169.49	169.26	169.24	169.26	169.18	169.35	169.38	169.46	169.36
D	Height 3	169.1	169.34	169.32	169.19	169.12	169.25	169.32	169.51	169.45	169.31
E	Height 4	169.19	169.26	169.33	169.35	169.27	169.37	169.27	169.23	169.23	169.24
F	Average Height	169.23	169.3625	169.275	169.295	169.255	169.28	169.33	169.35	169.3275	169.2975
G	Diameter 1	150.01	149.86	150.11	149.99	149.96	150.04	149.94	149.98	150.03	149.94
Н	Diameter 2	149.96	150.01	149.98	149.88	149.98	150.08	150.01	150.02	149.97	150.04
I	Average Diameter	149.985	149.935	150.045	149.935	149.97	150.06	149.975	150	150	149.99
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.279	2.280	2.276	2.278	2.278	2.275	2.278	2.276	2.277	2.278
K	Air Voids [(G _{mm} -J)/G _{mm}]	9.1	9.0	9.2	9.1	9.1	9.3	9.1	9.2	9.2	9.2
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6813.8	6818.3	6811.9				6814.8	6811.8	6811.9	6812.9
В	Submerged Mass	3945.2	3958.5	3951.8	3945.5	3951.8	3946.8	3954.7	3947.9	3947.1	3950.2
С	SSD Mass	6877.6	6881.3	6883.1	6874.5	6877.7	6872.9	6877.2	6873.4	6879.2	6875.9
D	G _{mb} [A/(C-B)]	2.324	2.333	2.324	2.325	2.328	2.327	2.332	2.328	2.323	2.329
Е	Air Voids [(G _{mm} -D)/G _{mm}]	7.3	6.9	7.3	7.3	7.1	7.2	7.0	7.1	7.3	7.1

I-94 Ann Arbor

Project Number: Location: Contractor: Mix: SMA

Gradation:

2.515 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6730	6729.3	6720.4	6722.6	6730.7	6724	6729.9	6727.7	6721.8	6727.8
В	Height 1	168.95	168.95	168.81	168.9	168.79	168.96	168.97	168.91	169.04	168.89
С	Height 2	168.65	168.92	169.03	168.99	169.16	169.03	168.85	168.84	169.15	169.01
D	Height 3	168.65	168.82	168.7	168.84	168.92	168.89	168.8	168.62	168.91	168.97
Е	Height 4	168.89	168.89	168.79	168.8	169.06	168.91	168.75	168.54	168.85	168.8
F	Average Height	168.785	168.895	168.8325	168.8825	168.9825	168.9475	168.8425	168.7275	168.9875	168.9175
G	Diameter 1	149.92	149.97	149.9	149.98	150.15	149.93	150.01	150	149.96	149.93
Н	Diameter 2	150.12	150	150	149.95	149.94	150.02	150	149.99	149.98	150.12
l	Average Diameter	150.02	149.985	149.95	149.965	150.045	149.975	150.005	149.995	149.97	150.025
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.256	2.255	2.254	2.254	2.253	2.253	2.255	2.257	2.252	2.253
K	Air Voids [(G _{mm} -J)/G _{mm}]	10.3	10.3	10.4	10.4	10.4	10.4	10.3	10.3	10.5	10.4
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	6730	6729.3	6720.4	6722.6	6730.7	6724	6729.9	6727.7	6721.8	6727.8
В	Submerged Mass	3937.5	3935.3	3927.1	3936.8	3939.9	3941.4	3940.2	3942.7	3930.6	3938.4
С	SSD Mass	6801.4	6797.4	6792.2	6801.8	6796.5	6801.5	6803.3	6809.1	6791.6	6795.1
D	G _{mb} [A/(C-B)]	2.350	2.351	2.346	2.346	2.356	2.351	2.351	2.347	2.349	2.355
F	Air Voids [(G _{mm} -D)/G _{mm}]	6.6	6.5	6.7	6.7	6.3	6.5	6.5	6.7	6.6	6.4

Phase II – 100mm Superpave Specimens for Dynamic Modulus Testing **Cut and Cored from 150mm Diameter Superpave Specimens**

Project Number: Location: Contractor: Mix: Gradation: M-50 Dundee 3 E 1

 G_{mm} 2.52

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2869.3	2816.3	2868.7	2825.2	2834.7	2859.7	2809.2	2893	2803.4	2832.8
В	Height 1	151.03	151.11	151.17	151.5	151.13	150.89	151.01	150.85	150.97	150.95
С	Height 2	151.52	151.13	151.45	151.48	151.31	151.11	150.88	150.92	150.98	151.02
D	Height 3	151.14	151.3	151.23	151.54	151.24	150.88	151.19	151.24	150.89	151.03
E	Height 4	150.96	151.37	151.12	151.34	151.02	151.07	151.07	151.06	150.81	150.82
F	Average Height	151.1625	151.2275	151.2425	151.465	151.175	150.9875	151.0375	151.0175	150.9125	150.955
G	Top Diameter 1	101.5	101.37	101.22	101.12	101.41	101.2	101.31	101.45	101.27	101.24
Н	Top Diameter 2	101.26	101.32	101.44	101.42	101.43	101.31	101.43	101.4	101.27	101.28
	Middle Diameter 1	101.22	101.27	101.29	101.3	100.99	101.11	101.32	101.2	101.3	101.13
	Middle Diameter 2	101.3	101.29	101.22	101.35	101.27	101.25	101.26	101.27	101.25	101.35
	Bottom Diameter 1	101.49	101.28	101.44	101.27	101.36	101.06	101.45	101.32	101.23	101.11
	Bottom Diameter 2	101.43	101.28	101.26	101.41	101.25	101.35	101.26	101.29	101.38	101.49
ı	Average Diameter	101.3667	101.3017	101.3	101.3117	101.285	101.2133	101.3383	101.3217	101.2833	101.2667
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.352	2.311	2.353	2.314	2.327	2.354	2.306	2.376	2.306	2.330
K	Air Voids [(G _{mm} -J)/G _{mm}]	6.7	8.3	6.6	8.2	7.6	6.6	8.5	5.7	8.5	7.5
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2869.3	2816.3		2825.2	2834.7	2859.7	2809.2	2893	2803.4	
В	Submerged Mass	1664.3	1634.6		1637.6	1654				1623.9	
C	SSD Mass	2884.1	2846.3		2850.7	2862.4	2875.8			2828.1	2861.9
D	G _{mb} [A/(C-B)]	2.352	2.324	2.351	2.329	2.346	2.348	2.324	2.374	2.328	2.336
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.7	7.8	6.7	7.6	6.9	6.8	7.8	5.8	7.6	7.3

M-36 Pinckney

Project Number: Location: Contractor: Mix: Gradation:

G_{mm} 2.511

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2821.1	2835.1	2852.2	2840.7	2852.2	2874.5	2869.3	2850.3	2845.3	2887.7
В	Height 1	151.55	151.34	151.85	151.62	151.35	151.17	152.41	151.51	151.44	152.82
С	Height 2	151.39	151.45	151.52	151.48	151.41	151.42	152.25	151.34	151.5	152.05
D	Height 3	151.37	151.58	151.47	151.47	151.31	151.29	152.57	151.3	151.58	152.13
E	Height 4	151.55	151.56	151.38	151.52	151.38	151.32	152.61	151.34	151.46	152.15
F	Average Height	151.47	151.48	151.56	151.52	151.36	151.30	152.46	151.37	151.50	152.29
G	Top Diameter 1	102.05	101.94	102.05	102.12	101.82	102.07	102	102.01	101.86	102.13
Н	Top Diameter 2	101.93	102.03	102.1	102.03	102.03	102.01	102.08	101.88	101.91	102.03
	Middle Diameter 1	101.63	101.67	101.79	101.66	101.62	101.74	101.58	101.53	101.76	101.57
	Middle Diameter 2	101.63	101.66	101.71	101.71	101.6	101.74	101.67	101.48	101.72	101.56
	Bottom Diameter 1	101.61	101.83	101.76	101.64	101.6	101.64	101.59	101.51	101.63	101.54
	Bottom Diameter 2	101.82	101.64	101.74	101.53	101.88	101.79	101.6	101.66	101.64	101.62
	Average Diameter	101.78	101.80	101.86	101.78	101.76	101.83	101.75	101.68	101.75	101.74
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.289	2.300	2.310	2.304	2.317	2.333	2.314	2.319	2.310	2.332
K	Air Voids [(G _{mm} -J)/G _{mm}]	8.8	8.4	8.0	8.2	7.7	7.1	7.8	7.6	8.0	7.1
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2821.1	2835.1	2852.2	2840.7	2852.2	2874.5	2869.3	2850.3	2845.3	
В	Submerged Mass	1627	1636		1642.7	1651	1672	1656.6		1648	
C	SSD Mass	2842.6	2855.2	2870	2862	2870.3	2891	2883.7	2864	2866.1	2899.7
D	G _{mb} [A/(C-B)]	2.321	2.325	2.337	2.330	2.339	2.358	2.338		2.336	
Е	Air Voids [(G _{mm} -D)/G _{mm}]	7.6	7.4	6.9	7.2	6.8	6.1	6.9	6.9	7.0	6.3

M-45 Grand Rapids

2.513 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2901.3	2901.3	2895.4	2897.7	2898.2	2905.9	2902.8	2910.1	2902.4	2898.3
В	Height 1	151.23	151.46	151.4	151.61	151.68	151.97	151.8	151.54	151.64	151.7
С	Height 2	151.32	151.4	151.32	151.42	151.43	151.54	151.79	151.58	151.61	151.84
D	Height 3	151.5	151.53	151.52	151.57	151.35	151.67	151.67	151.51	151.64	151.86
E	Height 4	151.36	151.4	151.51	151.41	151.22	151.55	151.68	151.4	151.69	151.77
F	Average Height	151.35	151.45	151.44	151.50	151.42	151.68	151.74	151.51	151.65	151.79
G	Top Diameter 1	101.95	101.95	101.97	102.03	101.96	101.93	101.95	101.92	101.93	101.89
Н	Top Diameter 2	101.97	101.82	101.87	101.91	101.89	102.18	102.02	101.86	101.98	102.02
	Middle Diameter 1	101.67	101.48	101.69	101.5	101.51	101.63	101.73	101.74	101.55	101.52
	Middle Diameter 2	101.53	101.57	101.43	101.71	101.6	101.61	101.55	101.65	101.51	101.5
	Bottom Diameter 1	101.42	101.65	101.46	101.91	101.66	101.56	101.54	101.5	101.53	101.62
	Bottom Diameter 2	101.75	101.31	101.87	101.61	101.51	101.83	101.81	101.83	101.92	101.44
I	Average Diameter	101.72	101.63	101.72	101.78	101.69	101.79	101.77	101.75	101.74	101.67
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.359	2.362	2.353	2.351	2.357	2.354	2.352	2.362	2.354	2.352
K	Air Voids [(G _{mm} -J)/G _{mm}]	6.1	6.0	6.4	6.5	6.2	6.3	6.4	6.0	6.3	6.4
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	2901.3	2901.3	2895.4	2897.7	2898.2	2905.9	2902.8	2910.1	2902.4	2898.3
В	Submerged Mass	1687.1	1686.6	1681.9		1681.2	1688.7	1687.5	1692.3	1684.5	
С	SSD Mass	2913.4	2913	2908.6	2909.7	2908.4	2917.3	2915.9	2920.6	2913.5	2909.4
D	G _{mb} [A/(C-B)]	2.366	2.366	2.360	2.361	2.362	2.365	2.363	2.369	2.362	2.359
E	Air Voids [(G _{mm} -D)/G _{mm}]	5.9	5.9	6.1	6.1	6.0	5.9	6.0	5.7	6.0	6.1

M-21 St. Johns

Project Number: Location: Contractor: Mix: Gradation: G_{mm}

	Sample	1 1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2821.8	2818.6	2831.5	2831.5	2827.1	2840.4	2833.2	2785.4	2812.7	2814.7
В	Height 1	151.96	152.57	153.07	152.98	153.53	153.28	153.03	151.76	152.07	152.58
С	Height 2	152.16	152.67	153.05	153.55	153.73	152.9	152.9	151.52	152.14	152.89
D	Height 3	152.46	152.09	153.33	153.6	153.06	153.03	152.47	151.54	152.45	153.02
E	Height 4	152.25	152.14	153.46	153.03	152.87	153.49	152.55	151.66	152.6	152.83
F	Average Height	152.21	152.37	153.23	153.29	153.30	153.18	152.74	151.62	152.32	152.83
G	Top Diameter 1	101.68	101.53	101.65	101.41	101.56	101.37	101.74	101.4	101.51	101.42
Н	Top Diameter 2	101.48	101.42	101.35	101.48	101.31	101.49	101.42	101.37	101.4	101.67
	Middle Diameter 1	101.56	101.51	101.53	101.46	101.54	101.56	101.48	101.52	101.56	101.62
	Middle Diameter 2	101.74	101.67	101.57	101.42	101.47	101.59	101.49	101.63	101.62	101.55
	Bottom Diameter 1	101.69	101.59	101.65	101.69	101.46	101.56	101.65	101.62	101.65	101.53
	Bottom Diameter 2	101.57	101.71	101.57	101.54	101.57	101.5	101.42	101.44	101.63	101.65
I	Average Diameter	101.62	101.57	101.55	101.50	101.49	101.51	101.53	101.50	101.56	101.57
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.286	2.283	2.281	2.283	2.280	2.291	2.291	2.271	2.279	2.273
K	Air Voids [(G _{mm} -J)/G _{mm}]	8.2	8.3	8.3	8.3	8.4	7.9	8.0	8.8	8.4	8.7
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	2821.8	2818.6	2831.5	2831.5	2827.1	2840.4	2833.2	2785.4	2812.7	2814.7
В	Submerged Mass	1616.1	1612.5	1618.9	1619.8	1621.2	1630.2	1627	1590.2	1611.2	1612.2
С	SSD Mass	2843.3	2840.1	2850.8	2851.5	2851.6	2861.2	2854.9	2810.7	2835.9	2841.6
D	G _{mb} [A/(C-B)]	2.299	2.296	2.298	2.299	2.298	2.307	2.307	2.282	2.297	2.289
E	Air Voids [(G _{mm} -D)/G _{mm}]	7.6	7.8	7.7	7.6	7.7	7.3	7.3	8.3	7.7	8.0

M-84 Saginaw

2.543 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2950.9	2944.7	2931.1	2916.1	2937.5	2953.6	2951.6	2952.9	2940.7	2965.8
В	Height 1	152.6	152.41	151.83	151.65	151.65	152.04	152.93	152.89	152.08	152.52
С	Height 2	152.42	152.83	152.06	151.64	152.13	152.11	152.97	153.07	152	152.44
D	Height 3	152.5	152.83	151.77	151.74	152.01	152.29	152.54	153.1	152.28	152.82
E	Height 4	152.75	152.46	151.78	151.57	151.78	152.53	152.64	153.22	152.23	152.15
F	Average Height	152.57	152.63	151.86	151.65	151.89	152.24	152.77	153.07	152.15	152.48
G	Top Diameter 1	101.43	101.53	101.52	101.59	101.42	101.49	101.48	101.49	101.46	101.54
Н	Top Diameter 2	101.55	101.53	101.39	101.46	101.71	101.54	101.43	101.43	101.54	101.58
	Middle Diameter 1	101.53	101.66	101.45	101.47	101.58	101.47	101.43	101.52	101.58	101.56
	Middle Diameter 2	101.56	101.52	101.53	101.65	101.45	101.48	101.44	101.49	101.56	101.65
	Bottom Diameter 1	101.53	101.44	101.5	101.59	101.6	101.59	101.58	101.65	101.58	101.66
	Bottom Diameter 2	101.59	101.51	101.56	101.56	101.52	101.4	101.34	101.55	101.53	101.53
I	Average Diameter	101.53	101.53	101.49	101.55	101.55	101.50	101.45	101.52	101.54	101.59
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.389	2.383	2.386	2.374	2.388	2.398	2.390	2.383	2.387	2.400
K	Air Voids [(G _{mm} -J)/G _{mm}]	6.1	6.3	6.2	6.6	6.1	5.7	6.0	6.3	6.1	5.6
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	2950.9	2944.7	2931.1	2916.1	2937.5			2952.9		2965.8
В	Submerged Mass	1725	1719.2	1712.4	1697.8	1717.1	1730.4	1723.6			1738.4
С	SSD Mass	2960.9	2952.7	2940.4	2925.2	2946.3	2962.7	2960	2961.8	2949.5	2974.3
D	G _{mb} [A/(C-B)]	2.388	2.387	2.387	2.376	2.390	2.397	2.387	2.385	2.389	2.400
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.1	6.1	6.1	6.6	6.0	5.7	6.1	6.2	6.0	5.6

BL I-96 Howell

Project Number: Location: Contractor: Mix: Gradation: G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2897.3	2880.6	2907.8	2901.8	2899.8	2846.9	2882.1	2890.9	2894.7	2888.5
В	Height 1	152.08	151.66	152.72	152.68	152.38	152.3	151.73	152.3	152.64	151.89
С	Height 2	152.39	151.92	152.8	152.89	152.92	152.54	151.59	152.24	152.7	152.11
D	Height 3	152.09	151.9	153.08	152.86	153.09	152.24	151.71	152.39	152.17	151.86
E	Height 4	152.02	151.67	153.29	152.67	152.48	152.07	151.63	152.49	152.26	151.68
F	Average Height	152.15	151.79	152.97	152.78	152.72	152.29	151.67	152.36	152.44	151.89
G	Top Diameter 1	101.37	101.47	101.49	101.5	101.51	99.88	101.43	101.51	101.49	101.42
Н	Top Diameter 2	101.57	101.66	101.59	101.58	101.39	99.79	101.39	101.55	101.35	101.55
	Middle Diameter 1	101.59	101.61	101.49	101.53	101.43	100.24	101.67	101.51	101.43	101.57
	Middle Diameter 2	101.52	101.46	101.54	101.48	101.54	101.31	101.61	101.58	101.53	101.58
	Bottom Diameter 1	101.52	101.6	101.58	101.48	101.54	101.69	101.51	101.59	101.62	101.63
	Bottom Diameter 2	101.55	101.55	101.55	101.56	101.52	101.57	101.68	101.54	101.52	101.58
I	Average Diameter	101.52	101.56	101.54	101.52	101.49	100.75	101.55	101.55	101.49	101.56
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.353	2.343	2.347	2.346	2.347	2.345	2.346	2.343	2.347	2.348
K	Air Voids [(G _{mm} -J)/G _{mm}]	5.9	6.3	6.1	6.2	6.1	6.2	6.2	6.3	6.1	6.1
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	2897.3	2880.6	2907.8	2901.8	2899.8	2846.9	2882.1	2890.9	2894.7	2888.5
В	Submerged Mass	1674.1	1658.4	1679	1674	1671.3	1661.2	1664.4	1669.2	1666.4	1641.5
C	SSD Mass	2905.2	2888.5	2917.3	2910.3	2907.9	2889	2897.9	2902.5	2895.6	2855.1
D	G _{mb} [A/(C-B)]	2.353	2.342	2.348	2.347	2.345	2.319	2.337	2.344	2.355	2.380
Е	Air Voids [(G _{mm} -D)/G _{mm}]	5.9	6.4	6.1	6.2	6.2	7.3	6.6	6.3	5.8	4.8

M-21 Owosso

2.47 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2855.8	2848.3	2849.8	2842	2845.1	2847.8	2848.6	2856.8	2840.5	2860
В	Height 1	151.77	151.81	151.67	151.53	151.66	151.61	151.78	151.85	151.65	152.4
С	Height 2	151.86	151.52	151.67	151.53	151.6	151.7	151.94	152.19	151.62	152.67
D	Height 3	151.62	151.48	151.62	151.76	151.66	151.49	151.59	152.09	151.67	152.71
E	Height 4	151.65	151.55	151.91	151.49	151.52	151.59	151.62	151.79	151.56	152.32
F	Average Height	151.73	151.59	151.72	151.58	151.61	151.60	151.73	151.98	151.63	152.53
G	Top Diameter 1	101.56	101.56	101.55	101.55	101.42	101.51	101.52	101.53	101.56	101.47
Н	Top Diameter 2	101.58	101.49	101.58	101.48	101.49	101.44	101.5	101.5	101.54	101.53
	Middle Diameter 1	101.61	101.58	101.57	101.56	101.54	101.58	101.52	101.57	101.59	101.58
	Middle Diameter 2	101.58	101.59	101.57	101.55	101.54	101.54	101.57	101.63	101.6	101.56
	Bottom Diameter 1	101.55	101.54	101.55	101.58	101.56	101.61	101.56	101.59	101.55	101.53
	Bottom Diameter 2	101.56	101.52	101.61	101.54	101.55	101.48	101.56	101.58	101.58	101.55
I	Average Diameter	101.57	101.55	101.57	101.54	101.52	101.53	101.54	101.57	101.57	101.54
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.323	2.320	2.318	2.315	2.318	2.320	2.318	2.320	2.312	2.316
K	Air Voids [(G _{mm} -J)/G _{mm}]	6.0	6.1	6.1	6.3	6.1	6.1	6.1	6.1	6.4	6.2
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	2855.8	2848.3	2849.8		2845.1	2847.8	2848.6			
В	Submerged Mass	1635.4	1629.2	1630.8	1621.5	1624	1629.1	1628.4	1632.9	1620.1	1635.3
С	SSD Mass	2863.8	2857.2	2857.7	2848.5	2851.6	2856	2856.4	2864.1	2848.4	2868.8
D	G _{mb} [A/(C-B)]	2.325	2.319	2.323	2.316	2.318	2.321	2.320	2.320	2.313	2.319
E	Air Voids [(G _{mm} -D)/G _{mm}]	5.9	6.1	6.0	6.2	6.2	6.0	6.1	6.1	6.4	6.1

M-66 Battle Creek

Project Number: Location: Contractor: Mix: Gradation: G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2858.6	2862.1	2863.9	2863.4	2876.6	2866.3	2876.8	2873.2	2869.5	2867.1
В	Height 1	152.09	151.75	151.81	151.82	151.88	151.77	151.67	151.65	151.67	151.71
С	Height 2	151.66	151.55	151.67	151.71	151.95	151.83	151.73	151.7	151.58	151.71
D	Height 3	151.67	151.68	151.75	151.9	151.91	151.89	152.09	151.77	151.56	151.52
E	Height 4	152.08	151.71	151.84	151.76	151.99	151.88	151.83	151.54	151.64	151.65
F	Average Height	151.88	151.67	151.77	151.80	151.93	151.84	151.83	151.67	151.61	151.65
G	Top Diameter 1	101.43	101.48	101.42	101.57	101.34	101.57	101.65	101.46	101.63	101.5
Н	Top Diameter 2	101.55	101.44	101.53	101.47	101.52	101.58	101.45	101.53	101.59	101.47
	Middle Diameter 1	101.59	101.47	101.63	101.6	101.63	101.59	101.48	101.59	101.57	101.54
	Middle Diameter 2	101.56	101.63	101.54	101.58	101.51	101.64	101.62	101.61	101.64	101.53
	Bottom Diameter 1	101.59	101.6	101.61	101.59	101.54	101.71	101.63	101.59	101.71	101.62
	Bottom Diameter 2	101.56	101.51	101.65	101.64	101.65	101.53	101.53	101.6	101.57	101.58
I	Average Diameter	101.55	101.52	101.56	101.58	101.53	101.60	101.56	101.56	101.62	101.54
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.324	2.331	2.329	2.328	2.338	2.328	2.339	2.338	2.334	2.335
K	Air Voids [(G _{mm} -J)/G _{mm}]	5.9	5.6	5.7	5.8	5.3	5.7	5.3	5.3	5.5	5.5
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2858.6	2862.1	2863.9	2863.4	2876.6		2876.8	2873.2	2869.5	2867.1
В	Submerged Mass	1638.8	1642.8	1644.2	1641.6	1654.8		1653.4	1653	1648.8	1647.4
С	SSD Mass	2867.2	2870.4	2872	2870.2	2884.4	2873.4	2883.3	2880.4	2876.3	2875.4
D	G _{mb} [A/(C-B)]	2.327	2.331	2.333	2.331	2.339	2.333	2.339	2.341	2.338	2.335
E	Air Voids [(G _{mm} -D)/G _{mm}]	5.8	5.6	5.6	5.6	5.3	5.5	5.3	5.2	5.4	5.5

Project Number: Location: Contractor: Mix: Gradation: M-50 Dundee 4 E 3

2.538 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2919.3	2913	2907.1	2916.7	2919.9	2911	2922	2921.2	2932.3	2915.5
В	Height 1	151.37	151.13	151.17	151.27	151.51	151.29	151.3	151.53	151.9	151.41
С	Height 2	151.38	151.2	151.18	151.24	151.58	151.22	151.22	151.84	151.93	151.35
D	Height 3	151.27	151.19	151.17	151.2	151.57	151.22	151.15	151.65	152.19	151.16
E	Height 4	151.39	151.2	151.28	151.3	151.47	151.18	151.15	151.65	152.02	151.19
F	Average Height	151.3525	151.18	151.2	151.2525	151.5325	151.2275	151.205	151.6675	152.01	151.2775
G	Top Diameter 1	101.83	101.76	101.84	101.95	101.92	102	101.89	101.9	101.87	101.89
Н	Top Diameter 2	101.96	101.82	101.98	101.81	101.89	101.96	101.87	101.97	101.95	101.86
	Middle Diameter 1	101.53	101.46	101.58	101.64	101.67	101.63	101.64	101.55	101.42	101.71
	Middle Diameter 2	101.65	101.71	101.55	101.62	101.65	101.59	101.51	101.47	101.63	101.56
	Bottom Diameter 1	101.69	101.87	101.52	101.65	101.41	101.7	101.56	101.53	101.7	101.6
	Bottom Diameter 2	101.48	101.68	101.63	101.69	101.5	101.74	101.56	101.73	101.65	101.48
	Average Diameter	101.69	101.72	101.68	101.73	101.67	101.77	101.67	101.69	101.70	101.68
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.375	2.371	2.368	2.373	2.373	2.366	2.380	2.371	2.375	2.373
K	Air Voids [(G _{mm} -J)/G _{mm}]	6.4	6.6	6.7	6.5	6.5	6.8	6.2	6.6	6.4	6.5
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	2919.3	2913	2907.1	2916.7	2919.9	2911	2922	2921.2	2932.3	2915.5
В	Submerged Mass	1706.9	1702	1694.8	1702.9	1706.2	1701.5	1710.2	1706.6	1712.7	1705.8
С	SSD Mass	2929	2924.2	2916.9	2925.9	2930.8	2922.8	2933.1	2932.1	2942.3	2928.6
D	G _{mb} [A/(C-B)]	2.389	2.383	2.379	2.385	2.384	2.384	2.389	2.384	2.385	2.384
E	Air Voids [(G _{mm} -D)/G _{mm}]	5.9	6.1	6.3	6.0	6.1	6.1	5.9	6.1	6.0	6.1

US-21 MIS

Project Number: Location: Contractor: Mix: Gradation: G_{mm}

2.491

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2864.2	2859.6	2854.2	2831.8	2830.3	2840	2859.1	2850.1	2854.6	2814.9
В	Height 1	151.54	151.24	151.17	151.23	151.14	151.14	153.33	151.32	151.14	151.13
С	Height 2	151.47	151.35	151.04	151.12	150.97	151.24	153.38	151.24	151.05	151.28
D	Height 3	151.48	151.6	151.22	151.19	151.24	151.55	153.61	151.22	151.14	151.6
E	Height 4	151.66	151.27	151.07	151.09	151.25	151.03	153.66	151.31	151.17	151.26
F	Average Height	151.54	151.37	151.13	151.16	151.15	151.24	153.50	151.27	151.13	151.32
G	Top Diameter 1	102.05	102.08	101.96	101.89	101.73	101.94	101.82	101.74	101.84	101.86
Н	Top Diameter 2	101.87	102.01	101.9	102.06	101.94	101.8	101.75	101.65	101.8	101.73
	Middle Diameter 1	101.66	101.65	101.69	101.52	101.58	101.33	101.49	101.52	101.52	101.51
	Middle Diameter 2	101.62	101.74	101.67	101.65	101.53	101.68	101.7	101.55	101.58	101.47
	Bottom Diameter 1	101.85	101.77	101.82	101.66	101.29	101.42	101.61	101.52	101.55	101.51
	Bottom Diameter 2	101.73	101.67	101.81	101.57	101.39	101.39	101.41	101.45	101.41	101.5
ı	Average Diameter	101.80	101.82	101.81	101.73	101.58	101.59	101.63	101.57	101.62	101.60
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.322	2.320	2.320	2.305	2.311	2.316	2.296	2.325	2.329	2.295
K	Air Voids [(G _{mm} -J)/G _{mm}]	6.8	6.9	6.9	7.5	7.2	7.0	7.8	6.7	6.5	7.9
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2864.2	2859.6	2854.2	2831.8	2830.3	2840	2859.1	2850.1	2854.6	2814.9
В	Submerged Mass	1645.1	1641.6	1637.6	1619	1621.4	1631.3	1642	1639.9	1643.5	1613.3
С	SSD Mass	2871.8	2866.8	2862.4	2840.2	2839.3	2849.7	2875.5	2859.7	2863.3	2831.4
D	G _{mb} [A/(C-B)]	2.335	2.334	2.330	2.319	2.324	2.331	2.318	2.337	2.340	2.311
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.3	6.3	6.4	6.9	6.7	6.4	6.9	6.2	6.1	7.2

314

M-59 Brighton

2.503 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2881.1	2870.2	2861.9	2869.9	2858.7	2873.6	2870.4	2875.2	2863.7	2876.1
В	Height 1	151.62	151.5	151.55	151.7	152.02	151.84	151.76	151.66	151.73	151.82
С	Height 2	151.59	151.7	151.55	151.68	151.63	151.84	151.91	151.84	151.68	151.8
D	Height 3	151.77	151.59	151.74	151.77	151.69	151.77	151.98	151.8	151.72	151.98
E	Height 4	151.86	151.72	151.65	151.58	151.78	151.54	151.93	151.81	151.95	152.53
F	Average Height	151.71	151.6275	151.6225	151.6825	151.78	151.7475	151.895	151.7775	151.77	152.0325
G	Top Diameter 1	101.33	101.3	101.32	101.34	101.39	101.39	101.34	101.27	101.28	101.32
Н	Top Diameter 2	101.3	101.35	101.33	101.34	101.38	101.46	101.33	101.54	101.6	101.25
	Middle Diameter 1	101.33	101.4	101.35	101.37	101.37	101.38	101.31	101.56	101.43	101.36
	Middle Diameter 2	101.35	101.38	101.28	101.37	101.41	101.49	101.32	101.3	101.49	101.35
	Bottom Diameter 1	101.29	101.33	101.43	101.38	101.3	101.24	101.36	101.39	101.41	101.49
	Bottom Diameter 2	101.35	101.42	101.47	101.39	101.47	101.37	101.27	101.3	101.47	101.35
	Average Diameter	101.325	101.3633	101.3633	101.365	101.3867	101.3883	101.3217	101.3933	101.4467	101.3533
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.355	2.346	2.339	2.345	2.333	2.346	2.344	2.346	2.334	2.345
K	Air Voids [(G _{mm} -J)/G _{mm}]	5.9	6.3	6.6	6.3	6.8	6.3	6.4	6.3	6.7	6.3
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	2881.1	2870.2	2861.9	2869.9	2858.7	2873.6	2870.4	2875.2	2863.7	2876.1
В	Submerged Mass	1678.2	1665.6	1659.8	1666.9	1660.5	1665.5	1660.6	1666	1654.4	1672.5
С	SSD Mass	2900.7	2890.5	2882.5	2890.6	2881.4	2889.8	2885.7	2891.7	2879.7	2897.4
D	G _{mb} [A/(C-B)]	2.357	2.343	2.341	2.345	2.341	2.347	2.343	2.346	2.337	2.348
E	Air Voids [(G _{mm} -D)/G _{mm}]	5.8	6.4	6.5	6.3	6.5	6.2	6.4	6.3	6.6	6.2

Michigan Ave. Dearborn

Project Number: Location: Contractor: Mix: Gradation: G_{mm} 3 E 10 2.493

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2860.4	2888.4	2871.8	2881.7	2875.2	2871.7	2887.9	2880.7	2875.1	2873.1
В	Height 1	151.41	151.65	151.66	151.83	151.94	151.77	151.81	151.94	151.89	151.97
С	Height 2	151.27	151.59	151.84	151.7	152	151.66	151.72	151.52	151.65	151.92
D	Height 3	151.06	151.83	151.72	151.72	151.8	151.65	151.93	151.9	151.69	151.9
E	Height 4	151.17	151.81	151.86	151.8	151.78	151.66	151.87	151.79	151.68	151.93
F	Average Height	151.23	151.72	151.77	151.76	151.88	151.69	151.83	151.79	151.73	151.93
G	Top Diameter 1	101.66	101.64	101.42	101.48	101.52	101.52	101.46	101.53	101.56	101.49
Н	Top Diameter 2	101.7	101.6	101.5	101.43	101.53	101.52	101.65	101.54	101.72	101.57
	Middle Diameter 1	101.6	101.54	101.43	101.54	101.59	101.63	101.57	101.6	101.68	101.53
	Middle Diameter 2	101.6	101.49	101.54	101.67	101.55	101.43	101.57	101.62	101.53	101.53
	Bottom Diameter 1	101.58	101.47	101.45	101.59	101.58	101.7	101.6	101.41	101.46	101.68
	Bottom Diameter 2	101.48	101.61	101.64	101.49	101.67	101.45	101.65	101.64	101.71	101.35
I	Average Diameter	101.60	101.56	101.50	101.53	101.57	101.55	101.58	101.56	101.61	101.53
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.333	2.350	2.339	2.345	2.336	2.338	2.347	2.343	2.337	2.336
K	Air Voids [(G _{mm} -J)/G _{mm}]	6.4	5.7	6.2	5.9	6.3	6.2	5.9	6.0	6.3	6.3
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2860.4	2888.4	2871.8	2881.7	2875.2	2871.7	2887.9	2880.7	2875.1	2873.1
В	Submerged Mass	1652	1673.8	1658.2	1666.1	1661.5	1658.4	1674.9	1667.7	1663.5	1657.8
С	SSD Mass	2872.2	2899	2882.6	2891.3	2886.7	2883.7	2898.6	2892	2888.5	2884.6
D	G _{mb} [A/(C-B)]	2.344	2.357	2.345	2.352	2.347	2.344	2.360	2.353	2.347	2.342
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.0	5.4	5.9	5.7	5.9	6.0	5.3	5.6	5.9	6.1

Vandyke Detroit

Project Number: Location: Contractor: Mix: Gradation:

2.604 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	3011.6	3007.4	3016.3	3002.3	3011.5	3014.6	3002.4	3011.8	3008.4	3009.1
В	Height 1	151.18	151.29	151.28	151.33	151.11	151.22	151.28	151.3	151.24	151.72
С	Height 2	151.23	151.33	151.16	151.18	151.2	151.34	151.21	151.35	151.24	151.39
D	Height 3	151.24	151.13	151.18	151.36	151.08	151.28	151.4	151.37	151.1	151.7
E	Height 4	151.19	151.2	151.32	151.06	151.18	151.14	151.35	151.25	151.34	151.66
F	Average Height	151.21	151.24	151.24	151.23	151.14	151.25	151.31	151.32	151.23	151.62
G	Top Diameter 1	101.82	101.96	101.93	101.9	101.85	101.84	101.9	101.8	101.91	101.84
Н	Top Diameter 2	101.86	101.94	101.89	101.97	101.84	101.89	101.99	101.89	101.87	102.07
	Middle Diameter 1	101.65	101.53	101.67	101.55	101.55	101.6	101.69	101.57	101.71	101.56
	Middle Diameter 2	101.49	101.48	101.57	101.6	101.66	101.69	101.53	101.73	101.52	101.69
	Bottom Diameter 1	101.53	101.73	101.69	101.8	101.75	101.87	101.47	101.84	101.63	101.64
	Bottom Diameter 2	101.68	101.48	101.6	101.57	101.62	101.73	101.79	101.54	101.5	101.64
I	Average Diameter	101.67	101.69	101.73	101.73	101.71	101.77	101.73	101.73	101.69	101.74
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.453	2.449	2.454	2.442	2.452	2.450	2.441	2.449	2.449	2.441
K	Air Voids [(G _{mm} -J)/G _{mm}]	5.8	6.0	5.8	6.2	5.8	5.9	6.2	6.0	5.9	6.2
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	3011.6	3007.4	3016.3	3002.3	3011.5	3014.6	3002.4	3011.8	3008.4	3009.1
В	Submerged Mass	1797.3	1793.3	1802.3	1788.1	1797	1800.1	1785.9	1797	1792.1	1792.1
С	SSD Mass	3021.3	3016.6	3025.6	3011.6	3019.8	3024.1	3010.1	3020.9	3016.1	3018.4
D	G _{mb} [A/(C-B)]	2.460	2.458	2.466	2.454	2.463	2.463	2.453	2.461	2.458	2.454
E	Air Voids [(G _{mm} -D)/G _{mm}]	5.5	5.6	5.3	5.8	5.4	5.4	5.8	5.5	5.6	5.8

US-23 Heartland

Project Number: Location: Contractor: Mix: Gradation: G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
А	Dry Mass	2904.8	2897.3	2902.7	2854.3	2883.3	2860.5	2900.6	2861.4	2878.5	2863.8
В	Height 1	153.66	152.63	152.94	153.9	152.61	153.08	153.63	152.14	152.16	153.43
С	Height 2	153.55	152.6	152.75	153.81	152.53	152.31	153.33	152.34	152.49	153.09
D	Height 3	153.21	153.09	152.13	153.25	153.23	152.7	152.85	152.27	151.98	153.18
E	Height 4	153.43	153.07	152.39	153.32	153.18	152.6	152.69	152.62	152.09	153.62
F	Average Height	153.46	152.85	152.55	153.57	152.89	152.67	153.13	152.34	152.18	153.33
G	Top Diameter 1	101.43	101.44	101.56	101.48	101.53	101.55	101.59	101.48	101.56	101.4
Н	Top Diameter 2	101.47	101.48	101.44	101.63	101.56	101.59	101.52	101.59	101.51	101.6
	Middle Diameter 1	101.55	101.59	101.65	101.56	101.57	101.54	101.56	101.53	101.52	101.55
	Middle Diameter 2	101.64	101.5	101.61	101.52	101.58	101.62	101.61	101.64	101.58	101.51
	Bottom Diameter 1	101.54	101.48	101.53	101.53	101.6	101.6	101.54	101.64	101.73	101.29
	Bottom Diameter 2	101.46	101.52	101.6	101.51	101.53	101.58	101.53	101.51	101.65	101.52
I	Average Diameter	101.52	101.50	101.57	101.54	101.56	101.58	101.56	101.57	101.59	101.48
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.339	2.343	2.349	2.295	2.328	2.312	2.338	2.318	2.333	2.309
K	Air Voids [(G _{mm} -J)/G _{mm}]	6.2	6.0	5.8	7.9	6.6	7.2	6.2	7.0	6.4	7.3
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	2904.8	2897.3	2902.7	2854.3	2883.3	2860.5	2900.6	2861.4	2878.5	2863.8
В	Submerged Mass	1682	1679.3	1684.9	1638.2	1667.8	1645.5	1684.4	1649.1	1663.2	1659.1
С	SSD Mass	2919	2911.1	2919.2	2875	2901	2877.5	2916.8	2880.3	2891	2889.9
D	G _{mb} [A/(C-B)]	2.348	2.352	2.352	2.308	2.338	2.322	2.354	2.324	2.344	2.327
E	Air Voids [(G _{mm} -D)/G _{mm}]	5.8	5.6	5.6	7.4	6.2	6.8	5.6	6.7	5.9	6.6

I-75 Levering Rd.

Project Number: Location: Contractor: Mix: Gradation:

2.443 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2848.2	2850.6	2849.6	2834.8	2828.2	2845.8	2858.7	2836.5	2832.8	2845.2
В	Height 1	151.81	152.46	151.82	152.27	151.92	152.37	152.95	152.28	152.1	151.76
С	Height 2	151.93	152.04	151.71	152.2	151.98	152.39	152.55	152.28	151.89	151.93
D	Height 3	152.05	151.99	151.89	152.06	152.18	151.89	152.36	151.98	151.96	152.26
E	Height 4	152.17	152.33	151.96	152.21	152.27	151.88	152.56	152	152.31	152.46
F	Average Height	151.99	152.21	151.85	152.19	152.09	152.13	152.61	152.14	152.07	152.10
G	Top Diameter 1	101.63	101.56	101.55	101.68	101.66	101.66	101.54	101.6	101.49	101.44
Н	Top Diameter 2	101.45	101.52	101.45	101.58	101.3	101.42	101.44	101.42	101.57	101.43
	Middle Diameter 1	101.49	101.69	101.54	101.49	101.45	101.48	101.44	101.5	101.57	101.59
	Middle Diameter 2	101.63	101.6	101.53	101.64	101.64	101.58	101.69	101.59	101.52	101.58
	Bottom Diameter 1	101.59	101.58	101.65	101.74	101.7	101.69	101.58	101.72	101.37	101.63
	Bottom Diameter 2	101.54	101.66	101.44	101.54	101.65	101.49	101.38	101.51	101.59	101.65
I	Average Diameter	101.56	101.60	101.53	101.61	101.57	101.55	101.51	101.56	101.52	101.55
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.313	2.310	2.318	2.297	2.295	2.309	2.315	2.302	2.301	2.309
K	Air Voids [(G _{mm} -J)/G _{mm}]	5.3	5.4	5.1	6.0	6.0	5.5	5.3	5.8	5.8	5.5
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	2848.2	2850.6	2849.6	2834.8	2828.2	2845.8	2858.7	2836.5	2832.8	2845.2
В	Submerged Mass	1623.9	1626.3	1626.6	1610	1605.6	1621.4	1630	1611.8	1608.9	1619.9
С	SSD Mass	2856.2	2859.6	2858.2	2843.9	2837	2854.8	2866	2845.5	2841.9	2853.3
D	G _{mb} [A/(C-B)]	2.311	2.311	2.314	2.297	2.297	2.307	2.313	2.299	2.297	2.307
E	Air Voids [(G _{mm} -D)/G _{mm}]	5.4	5.4	5.3	6.0	6.0	5.6	5.3	5.9	6.0	5.6

I-196 Grand Rapids

Project Number: Location: Contractor: Mix: Gradation: G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2865.7	2837.7	2851.1	2869.8	2859.3	2868.4	2871.8	2862.4	2851.3	2872.1
В	Height 1	151.02	151.28	151.07	151.31	151.33	151.33	151.17	151.25	151.19	151.29
С	Height 2	151	151.38	151.21	151.09	151.36	151.57	151.42	151.09	151.28	151.33
D	Height 3	150.87	151.28	151.28	151.05	151.3	151.25	151.07	151.14	151.39	151.2
E	Height 4	150.92	151.33	151.2	151.15	151.45	151.22	151.22	151.17	151.29	151.29
F	Average Height	150.9525	151.3175	151.19	151.15	151.36	151.3425	151.22	151.1625	151.2875	151.2775
G	Top Diameter 1	101.37	101.32	101.47	101.35	101.3	101.38	101.34	101.36	101.37	101.366
Н	Top Diameter 2	101.4	101.28	101.33	101.27	101.16	101.3	101.36	101.43	101.34	101.4
	Middle Diameter 1	101.4	101.26	101.41	101.28	101.24	101.35	101.28	101.3	101.33	101.44
	Middle Diameter 2	101.38	101.22	101.41	101.33	101.23	101.23	101.17	101.54	101.31	101.46
	Bottom Diameter 1	101.47	101.24	101.19	101.39	101.27	101.59	101.31	101.32	101.28	101.33
	Bottom Diameter 2	101.36	101.25	101.39	101.28	101.28	101.33	101.3	101.36	101.4	101.42
I	Average Diameter	101.3967	101.2617	101.3667	101.3167	101.2467	101.3633	101.2933	101.385	101.3383	101.4027
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.351	2.329	2.337	2.355	2.346	2.349	2.357	2.346	2.337	2.351
K	Air Voids [(G _{mm} -J)/G _{mm}]	5.9	6.8	6.5	5.8	6.1	6.0	5.7	6.1	6.5	5.9
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2865.7	2837.7	2851.1	2869.8	2859.3	2868.4	2871.8	2862.4	2851.3	2872.1
В	Submerged Mass	1648.8	1628.4	1641.8	1656.6	1645.3	1657.4	1659.5	1650	1641.2	1657.6
С	SSD Mass	2873.8	2853	2864.1	2881.6	2871	2881.3	2883.9	2874.7	2865.8	2883.6
D	G _{mb} [A/(C-B)]	2.339	2.317	2.333	2.343	2.333	2.344	2.345	2.337	2.328	2.343
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.4	7.3	6.7	6.3	6.7	6.2	6.1	6.5	6.8	6.3

I-75 Clarkston

2.487 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2863.3	2857.5	2838.5	2849.3	2855.9	2854.1	2850.6	2889.7	2855.5	2850.6
В	Height 1	151.14	151.05	150.79	150.84	151.03	151	150.89	151.25	150.97	151.09
С	Height 2	151.15	151.43	151.14	150.86	150.99	150.97	150.97	151.09	151.11	151.2
D	Height 3	151.34	151.36	151.09	150.99	151.02	151.01	151.03	151.14	151.16	151.24
E	Height 4	151.37	151.04	151.19	151.07	151.2	151.06	150.95	151.17	150.98	151.07
F	Average Height	151.25	151.22	151.0525	150.94	151.06	151.01	150.96	151.1625	151.055	151.15
G	Top Diameter 1	101.83	101.84	101.8	101.77	101.84	101.79	101.84	101.83	101.83	101.94
Н	Top Diameter 2	101.85	101.76	101.78	101.97	101.85	101.73	101.86	101.77	101.9	101.91
	Middle Diameter 1	101.62	101.5	101.62	101.61	101.5	101.54	101.58	101.58	101.58	101.55
	Middle Diameter 2	101.62	101.52	101.57	101.51	101.52	101.7	101.5	101.6	101.56	101.6
	Bottom Diameter 1	101.61	101.73	101.75	101.37	101.53	101.83	101.53	101.52	101.46	101.73
	Bottom Diameter 2	101.48	101.66	101.81	101.53	101.81	101.59	101.61	101.73	101.62	101.49
I	Average Diameter	101.67	101.67	101.72	101.63	101.68	101.70	101.65	101.67	101.66	101.70
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.332	2.328	2.312	2.327	2.328	2.327	2.327	2.355	2.329	2.321
K	Air Voids [(G _{mm} -J)/G _{mm}]	6.2	6.4	7.0	6.4	6.4	6.4	6.4	5.3	6.4	6.7
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	2863.3	2857.5	2838.5	2849.3	2855.9	2854.1	2850.6	2889.7	2855.5	2850.6
В	Submerged Mass	1651.2	1645.1	1629.8	1640.6	1646.7	1643.7	1638.7	1675.2	1644.9	1640.8
С	SSD Mass	2872.7	2867.1	2849.7	2860.5	2866.7	2865.2	2859.5	2897.8	2866.6	2862.6
D	G _{mb} [A/(C-B)]	2.344	2.338	2.327	2.336	2.341	2.337	2.335	2.364	2.337	2.333
E	Air Voids [(G _{mm} -D)/G _{mm}]	5.7	6.0	6.4	6.1	5.9	6.0	6.1	5.0	6.0	6.2

M-53 Detroit

Project Number: Location: Contractor: Mix: Gradation: G_{mm}

	Sample	- 1	2	3	4	5	6	7	8	9	10
A		2953.2	2957.8	2957.9	2961.8	2955.4	2954.5	2982.1	2964.7	2944.4	2963.8
	Dry Mass										
В	Height 1	151.1	151.22	151.23	150.95	151.31	151.3	151.56	151.44	150.91	150.95
С	Height 2	151.16	151.11	151.17	151.22	151.09	151.26	151.71	151.05	151.07	151.07
D	Height 3	150.95	151.28	151.09	151.21	151.3	151.26	151.76	151.05	150.85	151
E	Height 4	151.23	151.12	151.3	151.12	151.26	151.24	151.6	151.27	151.08	150.88
F	Average Height	151.11	151.1825	151.1975	151.125	151.24	151.265	151.6575	151.2025	150.9775	150.975
G	Top Diameter 1	101.31	101.33	101.28	101.51	101.54	101.34	101.54	101.34	101.33	101.3
Н	Top Diameter 2	101.42	101.47	101.39	101.51	101.34	101.33	101.34	101.32	101.38	101.32
	Middle Diameter 1	101.35	101.47	101.3	101.29	101.27	101.23	101.3	101.39	101.25	101.29
	Middle Diameter 2	101.43	101.36	101.34	101.32	101.33	101.3	101.32	101.17	101.27	101.27
	Bottom Diameter 1	101.38	101.52	101.27	101.45	101.33	101.43	101.31	101.36	101.32	101.39
	Bottom Diameter 2	101.49	101.36	101.31	101.36	101.39	101.5	101.3	101.34	101.31	101.19
I	Average Diameter	101.3967	101.4183	101.315	101.4067	101.3667	101.355	101.3517	101.32	101.31	101.2933
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.420	2.422	2.427	2.427	2.421	2.421	2.437	2.432	2.419	2.436
K	Air Voids [(G _{mm} -J)/G _{mm}]	5.6	5.5	5.3	5.3	5.5	5.5	4.9	5.1	5.6	5.0
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2953.2	2957.8	2957.9	2961.8	2955.4	2954.5	2982.1	2964.7	2944.4	2963.8
В	Submerged Mass	1741.8	1746.8	1744.2	1749.3	1743.6	1737.2	1763.7	1752.3	1734.5	1752.5
С	SSD Mass	2964.7	2969.1	2968.1	2972.7	2966.3	2962.2	2992	2974.1	2956.1	2974.4
D	G _{mb} [A/(C-B)]	2.415	2.420	2.417	2.421	2.417	2.412	2.428	2.427	2.410	2.426
E	Air Voids [(G _{mm} -D)/G _{mm}]	5.8	5.6	5.7	5.5	5.7	5.9	5.3	5.3	6.0	5.4

Michigan Ave. Dearborn

Project Number: Location: Contractor: Mix: Gradation: 4 E 10

2.485 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2841	2842	2844.6	2846.5	2842	2844.8	2835.3	2852.8	2844.3	2853.9
В	Height 1	151.76	151.72	151.71	151.64	151.66	151.75	151.77	151.66	151.77	151.79
С	Height 2	151.58	151.72	151.75	151.71	151.74	151.55	151.81	151.59	151.74	151.76
D	Height 3	151.54	151.81	151.76	151.76	151.6	151.79	151.69	151.77	151.75	151.81
E	Height 4	151.51	151.82	151.58	151.81	151.93	151.57	151.8	151.65	151.82	151.78
F	Average Height	151.60	151.77	151.70	151.73	151.73	151.67	151.77	151.67	151.77	151.79
G	Top Diameter 1	101.47	101.42	101.45	101.55	101.45	101.49	101.53	101.51	101.58	101.46
Н	Top Diameter 2	101.48	101.48	101.42	101.55	101.42	101.46	101.52	101.57	101.47	101.55
	Middle Diameter 1	101.54	101.55	101.51	101.54	101.52	101.53	101.47	101.57	101.53	101.58
	Middle Diameter 2	101.52	101.46	101.51	101.58	101.51	101.54	101.52	101.59	101.56	101.63
	Bottom Diameter 1	101.55	101.57	101.52	101.62	101.59	101.58	101.59	101.7	101.7	101.58
	Bottom Diameter 2	101.5	101.58	101.56	101.48	101.57	101.64	101.56	101.58	101.58	101.63
I	Average Diameter	101.51	101.51	101.50	101.55	101.51	101.54	101.53	101.59	101.57	101.57
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.316	2.314	2.318	2.316	2.314	2.316	2.307	2.321	2.313	2.320
K	Air Voids [(G _{mm} -J)/G _{mm}]	6.8	6.9	6.7	6.8	6.9	6.8	7.1	6.6	6.9	6.6
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	2841	2842	2844.6		2842	2844.8	2835.3			
В	Submerged Mass	1629.4	1629.9	1627.9	1634.3	1629.4	1629.9	1623.2	1637.9		
С	SSD Mass	2851.6	2853.1	2852.7	2857.8	2853.2	2854.6	2847	2862.4	2855.4	
D	G _{mb} [A/(C-B)]	2.324	2.323	2.323	2.327	2.322	2.323	2.317	2.330	2.320	2.331
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.5	6.5	6.5	6.4	6.5	6.5	6.8	6.2	6.6	6.2

I-75 Toledo

Project Number: Location: Contractor: Mix: Gradation:

2.507 G_{mm}

	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2874.2	2882.7	2881.4	2878	2877.4	2878.7	2880.4	2879.9	2871.2	2868.2
В	Height 1	151.4	151.9	151.93	151.55	151.61	151.93	151.63	151.57	151.61	151.55
С	Height 2	151.71	151.87	152.02	151.5	151.78	151.63	151.64	151.61	151.66	151.58
D	Height 3	151.29	151.52	151.93	151.59	151.76	151.59	151.85	151.68	151.62	151.53
E	Height 4	151.54	151.77	151.88	151.64	151.94	151.7	151.74	151.6	151.58	151.7
F	Average Height	151.49	151.77	151.94	151.57	151.77	151.71	151.72	151.62	151.62	151.59
G	Top Diameter 1	101.5	101.52	101.46	101.36	101.46	101.55	101.37	101.4	101.38	101.5
Н	Top Diameter 2	101.53	101.53	101.71	101.63	101.58	101.45	101.61	101.36	101.41	101.51
	Middle Diameter 1	101.59	101.54	101.64	101.48	101.5	101.6	101.58	101.38	101.56	101.47
	Middle Diameter 2	101.48	101.57	101.51	101.54	101.55	101.43	101.52	101.46	101.48	101.47
	Bottom Diameter 1	101.54	101.59	101.64	101.53	101.64	101.52	101.57	101.47	101.58	101.52
	Bottom Diameter 2	101.53	101.58	101.62	101.58	101.56	101.51	101.56	101.48	101.52	101.56
	Average Diameter	101.53	101.56	101.60	101.52	101.55	101.51	101.54	101.43	101.49	101.51
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.344	2.345	2.339	2.346	2.341	2.345	2.345	2.351	2.341	2.338
K	Air Voids [(G _{mm} -J)/G _{mm}]	6.5	6.5	6.7	6.4	6.6	6.5	6.5	6.2	6.6	6.7
	Sample	1	2	3	4	5	6	7	8	9	10
A	Dry Mass	2874.2	2882.7	2881.4	2878	2877.4	2878.7	2880.4	2879.9		2868.2
В	Submerged Mass	1661	1670.1	1667.8	1664	1664.4	1664.7	1670	1671.8	1662.7	1659.8
С	SSD Mass	2885.8	2895.3	2893.9	2888.9	2890.3	2890.4	2895.5	2893.1	2886.3	2882.4
D	G _{mb} [A/(C-B)]	2.347	2.353	2.350	2.350	2.347	2.349	2.350	2.358	2.347	2.346
E	Air Voids [(G _{mm} -D)/G _{mm}]	6.4	6.1	6.3	6.3	6.4	6.3	6.2	5.9	6.4	6.4

Location: I-94 Ann Arbor

Contractor:
Mix: SMA

VIIX.

G_{mm} 2.515

	Sample	1	2	3	4	5	6	7	8	9	10
		2006.1	2913.9	2902.1			2907.7	2889.2		2895	2881.1
A	Dry Mass	2906.1			2885	2907.7			2890.7		
В	Height 1	152.01	152.24	152.36	151.03	152.19	152.97	151.82	151.82	151.85	151.75
С	Height 2	152.32	152.26	152.38	151.14	152.2	152.65	151.93	151.5	151.98	151.95
D	Height 3	152.18	152.32	152.93	151.16	152.02	152.79	151.77	151.56	151.84	151.62
E	Height 4	151.84	152.39	152.69	151.06	151.94	152.72	151.95	151.77	151.95	151.68
F	Average Height	152.0875	152.3025	152.59	151.0975	152.0875	152.7825	151.8675	151.6625	151.905	151.75
G	Top Diameter 1	101.38	101.44	101.59	101.32	101.31	101.31	101.3	101.33	101.35	101.49
Н	Top Diameter 2	101.48	101.56	101.59	101.34	101.34	101.3	101.25	101.33	101.31	101.3
	Middle Diameter 1	101.64	101.46	101.63	101.33	101.27	101.36	101.28	101.32	101.48	101.28
	Middle Diameter 2	101.48	101.59	101.59	101.28	101.3	101.3	101.33	101.31	101.32	101.36
	Bottom Diameter 1	101.62	101.6	101.83	101.35	101.33	101.3	101.34	101.32	101.32	101.29
	Bottom Diameter 2	101.6	101.62	101.61	101.28	101.27	101.33	101.37	101.47	101.45	101.43
	Average Diameter	101.5333	101.545	101.64	101.3167	101.3033	101.3167	101.3117	101.3467	101.3717	101.3583
J	$G_{mb} [A/(F^*\pi^*I^2/4)]$	2.360	2.362	2.344	2.368	2.372	2.361	2.360	2.363	2.361	2.353
K	Air Voids [(G _{mm} -J)/G _{mm}]	6.2	6.1	6.8	5.8	5.7	6.1	6.2	6.1	6.1	6.4
	Sample	1	2	3	4	5	6	7	8	9	10
Α	Dry Mass	2906.1	2913.9	2902.1	2885	2907.7	2907.7	2889.2	2890.7	2895	2881.1
В	Submerged Mass	1696.1	1703.1	1684.5	1692.4	1703.9	1709.9	1691.7	1689.6	1696.3	1678.1
С	SSD Mass	2924.4	2932.9	2911.4	2908.7	2931.2	2934.7	2915.4	2911.8	2917.1	2900.1
D	G _{mb} [A/(C-B)]	2.366	2.369	2.365	2.372	2.369	2.374	2.361	2.365	2.371	2.358
Е	Air Voids [(G _{mm} -D)/G _{mm}]	5.9	5.8	5.9	5.7	5.8	5.6	6.1	6.0	5.7	6.3

APPENDIX C SAS OUTPUTS

Distribution Fitting Outputs for Phase I and Phase II Phase I Moisture Study

150mm Superpave - 1 Freeze/thaw Cycle

The UNIVARIATE Procedure Variable: tsrS1

Moments

N 35 Sum Weights 35 93.2857143 Sum Observations Mean 3265 11.8534468 Variance 140.504202 **Std Deviation** Skewness -0.5350362 Kurtosis 0.019754 Uncorrected SS 309355 Corrected SS 4777.14286 Coeff Variation 12.7066046 Std Error Mean 2.0035982

Basic Statistical Measures

 Location
 Variability

 Mean
 93.2857
 Std Deviation
 11.85345

 Median
 96.0000
 Variance
 140.50420

 Mode
 100.0000
 Range
 52.00000

 Interquartile Range
 15.00000

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Student's t t 46.55909 Pr > |t| < .0001Sign M 17.5 Pr >= |M| < .0001Signed Rank S 315 Pr >= |S| < .0001

Fitted Distributions for tsrS1

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 93.28571 Std Dev Sigma 11.85345

Goodness-of-Fit Tests for Normal Distribution

Test ---- Value-----

Kolmogorov-Smirnov D 0.14302463 Pr > D 0.070 Cramer-von Mises W-Sq 0.07795230 Pr > W-Sq 0.220 Anderson-Darling A-Sq 0.43589260 Pr > A-Sq >0.250

Parameters for Lognormal Distribution Parameter Symbol Estimate

Threshold Theta 0
Scale Zeta 4.527278
Shape Sigma 0.133903
Mean 93.3395
Std Dev 12.55466

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0 Scale Sigma 98.27725 Shape C 9.635224 Mean 93.34722 Std Dev 11.63131

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Value-----

Cramer-von Mises W-Sq 0.05761474 Pr > W-Sq >0.250 Anderson-Darling A-Sq 0.29976607 Pr > A-Sq >0.250

150mm Superpave – 2 Freeze/thaw Cycle

The UNIVARIATE Procedure

Variable: tsrS2

Moments

N 35 Sum Weights 35 87.9428571 Sum Observations 3078 Mean **Std Deviation** 13.0315067 Variance 169.820168 0.09469332 Kurtosis Skewness -0.8544696 Uncorrected SS 276462 Corrected SS 5773.88571 Coeff Variation 14.8181526 Std Error Mean 2.20272667

Basic Statistical Measures

Location Variability

 Mean
 87.94286
 Std Deviation
 13.03151

 Median
 89.00000
 Variance
 169.82017

 Mode
 73.00000
 Range
 51.00000

 Interquartile Range
 22.00000

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Fitted Distributions for tsrS2

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 87.94286 Std Dev Sigma 13.03151

Goodness-of-Fit Tests for Normal Distribution

Test ---- Value-----

Kolmogorov-Smirnov D 0.12012127 Pr > D > 0.150Cramer-von Mises W-Sq 0.06963466 Pr > W-Sq > 0.250Anderson-Darling A-Sq 0.45030797 Pr > A-Sq > 0.250

Parameters for Lognormal Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Zeta 4.465882
Shape Sigma 0.149769
Mean 87.97896
Std Dev 13.25076

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Kolmogorov-Smirnov D 0.10983981 Pr > D > 0.150Cramer-von Mises W-Sq 0.09047980 Pr > W-Sq 0.147 Anderson-Darling A-Sq 0.53068504 Pr > A-Sq 0.170

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 93.5345
Shape C 7.540292
Mean 87.82856
Std Dev 13.77098

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Value-----

Cramer-von Mises W-Sq 0.05364863 Pr > W-Sq >0.250Anderson-Darling A-Sq 0.41954107 Pr > A-Sq >0.250

150mm Superpave – 3 Freeze/thaw Cycle

The UNIVARIATE Procedure

Variable: tsrS3

Moments

N 35 Sum Weights 35 83.4857143 Sum Observations 2922 Mean **Std Deviation** 15.5324545 Variance 241.257143 Skewness 0.32710397 Kurtosis -0.2173961 Uncorrected SS 252148 Corrected SS 8202.74286 18.604925 Std Error Mean Coeff Variation 2.625464

Basic Statistical Measures

Location Variability

 Mean
 83.48571
 Std Deviation
 15.53245

 Median
 84.00000
 Variance
 241.25714

 Mode
 91.00000
 Range
 63.00000

 Interquartile Range
 21.00000

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Student's t t 31.79846 Pr > |t| < .0001Sign M 17.5 Pr >= |M| < .0001Signed Rank S 315 Pr >= |S| < .0001

Fitted Distributions for tsrS3

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 83.48571 Std Dev Sigma 15.53245

Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic---- P Value-----

Kolmogorov-Smirnov D 0.08639713 Pr > D >0.150 Cramer-von Mises W-Sq 0.03624281 Pr > W-Sq >0.250 Anderson-Darling A-Sq 0.28216379 Pr > A-Sq >0.250

Parameters for Lognormal Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Zeta 4.407805
Shape Sigma 0.187024
Mean 83.53737
Std Dev 15.76111

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Kolmogorov-Smirnov D 0.10919085 Pr > D > 0.150Cramer-von Mises W-Sq 0.04567675 Pr > W-Sq >0.500 Anderson-Darling A-Sq 0.27629087 Pr > A-Sq >0.500

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 89.93046
Shape C 5.782065
Mean 83.2585
Std Dev 16.69232

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Value-----

Cramer-von Mises W-Sq 0.04837711 Pr > W-Sq >0.250 Anderson-Darling A-Sq 0.43219627 Pr > A-Sq >0.250

100mm Marshall - 1 Freeze/thaw Cycle

The UNIVARIATE Procedure

Variable: tsrM1 Moments

N Sum Weights 35 Mean 97.7714286 Sum Observations 3422 **Std Deviation** 21.0895649 Variance 444.769748 Skewness -0.2211672 Kurtosis -0.9689605 349696 Corrected SS Uncorrected SS 15122.1714 Coeff Variation 21.5702739 Std Error Mean 3.5647871

Basic Statistical Measures

Location Variability

 Mean
 97.7714
 Std Deviation
 21.08956

 Median
 99.0000
 Variance
 444.76975

 Mode
 116.0000
 Range
 73.00000

 Interquartile Range
 39.00000

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 97.77143 Std Dev Sigma 21.08956

Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic---- P Value-----

Threshold Theta 0
Scale Zeta 4.558176
Shape Sigma 0.229319
Mean 97.9512
Std Dev 22.76068

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 106.1106
Shape C 5.522241
Mean 97.98391
Std Dev 20.49222

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Value-----

Cramer-von Mises W-Sq 0.04951851 Pr > W-Sq >0.250 Anderson-Darling A-Sq 0.35492956 Pr > A-Sq >0.250

100mm Marshall - 2 Freeze/thaw Cycle

The UNIVARIATE Procedure

Variable: tsrM2 Moments

N 35 Sum Weights 35 Mean 94.7428571 Sum Observations 3316 **Std Deviation** 20.0826862 Variance 403.314286 Skewness 0.00533005 Kurtosis -0.4631701 327880 Corrected SS Uncorrected SS 13712.6857 Coeff Variation 21.1970452 Std Error Mean 3.39459354

Basic Statistical Measures

Location Variability

 Mean
 94.7429
 Std Deviation
 20.08269

 Median
 94.0000
 Variance
 403.31429

 Mode
 105.0000
 Range
 83.00000

 Interquartile Range
 28.00000

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 94.74286 Std Dev Sigma 20.08269

Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic---- P Value-----

Kolmogorov-Smirnov D 0.07773968 Pr > D > 0.150Cramer-von Mises W-Sq 0.03579673 Pr > W-Sq > 0.250Anderson-Darling A-Sq 0.22153527 Pr > A-Sq > 0.250

Threshold Theta 0
Scale Zeta 4.528125
Shape Sigma 0.221542
Mean 94.88501
Std Dev 21.28165

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 102.751
Shape C 5.343813
Mean 94.70432
Std Dev 20.41195

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Statistic---- P Value-----

Cramer-von Mises W-Sq 0.03110473 Pr > W-Sq >0.250 Anderson-Darling A-Sq 0.21469917 Pr > A-Sq >0.250

100mm Marshall – 3 Freeze/thaw Cycle

The UNIVARIATE Procedure

Variable: tsrM3
Moments

N 35 Sum Weights 35

 Mean
 83.4571429
 Sum Observations
 2921

 Std Deviation
 19.1454846
 Variance
 366.54958

 Skewness
 -0.1889456
 Kurtosis
 -0.8930737

 Uncorrected SS
 256241
 Corrected SS
 12462.6857

 Coeff Variation
 22.9404985
 Std Error Mean
 3.23617755

Basic Statistical Measures

Location Variability

 Mean
 83.45714
 Std Deviation
 19.14548

 Median
 86.00000
 Variance
 366.54958

 Mode
 68.00000
 Range
 71.00000

 Interquartile Range
 31.00000

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 83.45714 Std Dev Sigma 19.14548

Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic---- P Value-----

Kolmogorov-Smirnov D 0.09087113 Pr > D >0.150 Cramer-von Mises W-Sq 0.06741259 Pr > W-Sq >0.250 Anderson-Darling A-Sq 0.40882763 Pr > A-Sq >0.250

Threshold Theta 0
Scale Zeta 4.396524
Shape Sigma 0.244979
Mean 83.6408
Std Dev 20.80157

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Parameters for Weibull Distribution

Parameter Symbol Estimate

 Threshold
 Theta
 0

 Scale
 Sigma
 90.92177

 Shape
 C
 5.146386

 Mean
 83.62063

 Std Dev
 18.65498

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Value-----

Cramer-von Mises W-Sq 0.04754713 Pr > W-Sq >0.250 Anderson-Darling A-Sq 0.32296421 Pr > A-Sq >0.250

100mm Superpave – 1 Freeze/thaw Cycle

The UNIVARIATE Procedure

Variable: tsrS1 Moments

 N
 35 Sum Weights
 35

 Mean
 88.8 Sum Observations
 3108

 Std Deviation
 16.4742223 Variance
 271.4

 Skewness
 0.27572465 Kurtosis
 0.48623737

Uncorrected SS 285218 Corrected SS 9227.6 Coeff Variation 18.5520521 Std Error Mean 2.78465181

Basic Statistical Measures

Location Variability

 Mean
 88.80000
 Std Deviation
 16.47422

 Median
 89.00000
 Variance
 271.40000

 Mode
 78.00000
 Range
 76.00000

 Interquartile Range
 22.00000

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 88.8 Std Dev Sigma 16.47422

Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic---- P Value-----

Kolmogorov-Smirnov D 0.11366899 Pr > D > 0.150Cramer-von Mises W-Sq 0.04746100 Pr > W-Sq > 0.250Anderson-Darling A-Sq 0.30226604 Pr > A-Sq > 0.250

Threshold Theta 0 Scale Zeta 4.469278 Shape Sigma 0.189772 Mean 88.87983 Std Dev 17.01994

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Kolmogorov-Smirnov D 0.10134991 Pr > D >0.150 Cramer-von Mises W-Sq 0.04657419 Pr > W-Sq >0.500 Anderson-Darling A-Sq 0.30444000 Pr > A-Sq >0.500

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 95.59641
Shape C 5.746508
Mean 88.47348
Std Dev 17.83878

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Statistic---- P Value-----

Cramer-von Mises W-Sq 0.08698467 Pr > W-Sq 0.162 Anderson-Darling A-Sq 0.55683460 Pr > A-Sq 0.156

100mm Superpave – 2 Freeze/thaw Cycle

The UNIVARIATE Procedure

Variable: tsrS2 Moments

 N
 35
 Sum Weights
 35

 Mean
 79.8857143
 Sum Observations
 2796

 Std Deviation
 15.2966191
 Variance
 233.986555

 Skewness
 0.12837539
 Kurtosis
 -0.0897758

Uncorrected SS 231316 Corrected SS 7955.54286 Coeff Variation 19.1481283 Std Error Mean 2.58560054

Basic Statistical Measures

Location Variability

 Mean
 79.88571
 Std Deviation
 15.29662

 Median
 80.00000
 Variance
 233.98655

 Mode
 83.00000
 Range
 65.00000

 Interquartile Range
 18.00000

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 79.88571 Std Dev Sigma 15.29662

Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic---- P Value-----

Kolmogorov-Smirnov D 0.10808692 Pr > D > 0.150Cramer-von Mises W-Sq 0.05481793 Pr > W-Sq > 0.250Anderson-Darling A-Sq 0.33928688 Pr > A-Sq > 0.250

Threshold Theta 0 Scale Zeta 4.362207 Shape Sigma 0.196774 Mean 79.96324 Std Dev 15.88827

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Parameters for Weibull Distribution

Parameter Symbol Estimate

 Threshold
 Theta
 0

 Scale
 Sigma
 86.13012

 Shape
 C
 5.732775

 Mean
 79.70183

 Std Dev
 16.10556

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Value-----

 $\begin{array}{lll} \text{Cramer-von Mises} & \text{W-Sq } 0.05705911 & \text{Pr} > \text{W-Sq } > 0.250 \\ \text{Anderson-Darling} & \text{A-Sq } 0.37172290 & \text{Pr} > \text{A-Sq } > 0.250 \\ \end{array}$

100mm Superpave – 3 Freeze/thaw Cycle

The UNIVARIATE Procedure

Variable: tsrS3 Moments

 N
 35
 Sum Weights
 35

 Mean
 74.4857143
 Sum Observations
 2607

 Std Deviation
 18.2311489
 Variance
 332.37479

Skewness 0.55300249 Kurtosis 0.70812845
Uncorrected SS 205485 Corrected SS 11300.7429
Coeff Variation 24.4760342 Std Error Mean 3.08162661

Basic Statistical Measures

Location Variability

 Mean
 74.48571
 Std Deviation
 18.23115

 Median
 71.00000
 Variance
 332.37479

 Mode
 70.00000
 Range
 84.00000

 Interquartile Range
 23.00000

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 74.48571 Std Dev Sigma 18.23115

Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic---- P Value-----

Kolmogorov-Smirnov D 0.09009951 Pr > D > 0.150Cramer-von Mises W-Sq 0.03320896 Pr > W-Sq >0.250 Anderson-Darling A-Sq 0.22272842 Pr > A-Sq >0.250

Threshold Theta 0 Scale Zeta 4.281421 Shape Sigma 0.247093 Mean 74.58571 Std Dev 18.71454

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Kolmogorov-Smirnov D 0.07556771 Pr > D > 0.150 Cramer-von Mises W-Sq 0.02364675 Pr > W-Sq > 0.500 Anderson-Darling A-Sq 0.17885336 Pr > A-Sq > 0.500

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 81.54436
Shape C 4.310017
Mean 74.22941
Std Dev 19.46317

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Value-----

Cramer-von Mises W-Sq 0.05684418 Pr > W-Sq >0.250 Anderson-Darling A-Sq 0.39553700 Pr > A-Sq >0.250

Phase II Moisture Study - TSR

The UNIVARIATE Procedure

Variable: tsr Moments

N 105 Sum Weights 105 Mean 91.952381 Sum Observations 9655 **Std Deviation** 11.57813 Variance 134.053095 Skewness -0.0367541 Kurtosis -0.0117542 901741.76 Corrected SS Uncorrected SS 13941.5219 Coeff Variation 12.5914413 Std Error Mean 1.1299098

Basic Statistical Measures

Location Variability

 Mean
 91.95238
 Std Deviation
 11.57813

 Median
 92.50000
 Variance
 134.05310

 Mode
 92.30000
 Range
 62.00000

 Interquartile Range
 15.60000

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 91.95238 Std Dev Sigma 11.57813

Goodness-of-Fit Tests for Normal Distribution

Test ---- Statistic---- Value-----

Kolmogorov-Smirnov D 0.07719145 Pr > D 0.125 Cramer-von Mises W-Sq 0.07815315 Pr > W-Sq 0.223 Anderson-Darling A-Sq 0.49132013 Pr > A-Sq 0.223

Threshold Theta 0 Scale Zeta 4.51321 Shape Sigma 0.128664 Mean 91.97225 Std Dev 11.88264

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Kolmogorov-Smirnov D 0.08659458 Pr > D 0.051 Cramer-von Mises W-Sq 0.15037342 Pr > W-Sq 0.024 Anderson-Darling A-Sq 0.86510204 Pr > A-Sq 0.025

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 97.01041
Shape C 8.590305
Mean 91.66893
Std Dev 12.72391

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Value-----

Cramer-von Mises W-Sq 0.07307117 Pr > W-Sq 0.242 Anderson-Darling A-Sq 0.64161236 Pr > A-Sq 0.093

Phase II Moisture Study - E* Ratio

The UNIVARIATE Procedure Variable: estar 0.02 Hz

Moments

N 62 Sum Weights 62 86.9080645 Sum Observations 5388.3 Mean 651.662393 **Std Deviation** 25.527679 Variance -0.3990607 Skewness 0.46366812 Kurtosis Uncorrected SS 508038.13 Corrected SS 39751.406 Coeff Variation 29.3731993 Std Error Mean 3.24201847

Basic Statistical Measures

Location Variability

 Mean
 86.90806
 Std Deviation
 25.52768

 Median
 83.80000
 Variance
 651.66239

 Mode
 76.30000
 Range
 111.90000

 Interquartile Range
 35.80000

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Student's t t 26.80678 Pr > |t| < .0001Sign M 31 Pr >= |M| < .0001Signed Rank S 976.5 Pr >= |S| < .0001

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 86.90806 Std Dev Sigma 25.52768

Goodness-of-Fit Tests for Normal Distribution

Test ---- Statistic---- P Value-----

Kolmogorov-Smirnov D 0.09684781 Pr > D >0.150 Cramer-von Mises W-Sq 0.08336662 Pr > W-Sq 0.191 Anderson-Darling A-Sq 0.51915095 Pr > A-Sq 0.189

Threshold Theta 0
Scale Zeta 4.422043
Shape Sigma 0.297241
Mean 87.02706
Std Dev 26.45008

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 96.32195
Shape C 3.691709
Mean 86.91536
Std Dev 26.21509

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Value-----

Cramer-von Mises W-Sq 0.07911830 Pr > W-Sq 0.208 Anderson-Darling A-Sq 0.52055657 Pr > A-Sq 0.195

The UNIVARIATE Procedure Variable: estar 0.1 Hz

Moments

N Sum Weights 62 Mean 80.3080645 Sum Observations 4979.1 **Std Deviation** 20.7464182 Variance 430.413868 Skewness 0.15279987 Kurtosis -0.881308 426117.13 Corrected SS Uncorrected SS 26255.246 Coeff Variation 25.8335428 Std Error Mean 2.63479775

Basic Statistical Measures

Location Variability

 Mean
 80.30806
 Std Deviation
 20.74642

 Median
 79.55000
 Variance
 430.41387

 Mode
 60.20000
 Range
 80.30000

 Interquartile Range
 30.60000

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 80.30806 Std Dev Sigma 20.74642

Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic---- P Value-----

Threshold Theta 0
Scale Zeta 4.351487
Shape Sigma 0.268491
Mean 80.44152
Std Dev 21.99301

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Kolmogorov-Smirnov D 0.08809599 Pr > D >0.150 Cramer-von Mises W-Sq 0.06645013 Pr > W-Sq 0.326 Anderson-Darling A-Sq 0.46893534 Pr > A-Sq 0.245

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 88.27489
Shape C 4.342228
Mean 80.39079
Std Dev 20.93678

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Value-----

Cramer-von Mises W-Sq 0.07277117 Pr > W-Sq 0.242 Anderson-Darling A-Sq 0.53598981 Pr > A-Sq 0.180

The UNIVARIATE Procedure Variable: estar 1.0 Hz

Moments

N 62 62 Sum Weights Mean 78.2645161 Sum Observations 4852.4 **Std Deviation** 22.8424906 Variance 521.779376 Skewness 0.15583434 Kurtosis -0.6377257 411599.28 Corrected SS Uncorrected SS 31828.5419 Coeff Variation 29.1862669 Std Error Mean 2.9009992

Basic Statistical Measures

Location Variability

 Mean
 78.26452
 Std Deviation
 22.84249

 Median
 76.85000
 Variance
 521.77938

 Mode
 44.40000
 Range
 93.70000

 Interquartile Range
 31.80000

NOTE: The mode displayed is the smallest of 5 modes with a count of 2.

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 78.26452 Std Dev Sigma 22.84249

Goodness-of-Fit Tests for Normal Distribution

Test ---- Value-----

Threshold Theta 0
Scale Zeta 4.31521
Shape Sigma 0.308956
Mean 78.48729
Std Dev 24.83946

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Kolmogorov-Smirnov D 0.14446214 Pr > D < 0.010Cramer-von Mises W-Sq 0.12531582 Pr > W-Sq 0.050Anderson-Darling A-Sq 0.87500643 Pr > A-Sq 0.024

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 86.65676
Shape C 3.827929
Mean 78.35128
Std Dev 22.87194

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Value-----

Cramer-von Mises W-Sq 0.07165103 Pr > W-Sq 0.248 Anderson-Darling A-Sq 0.46314926 Pr > A-Sq 0.249

The UNIVARIATE Procedure Variable: estar 5.0 Hz

Moments

N Sum Weights 62 Mean 82.1564516 Sum Observations 5093.7 **Std Deviation** 24.536561 Variance 602.042827 Skewness 0.05808302 Kurtosis -0.8134506 455204.93 Corrected SS Uncorrected SS 36724.6124 Coeff Variation 29.8656533 Std Error Mean 3.11614637

Basic Statistical Measures

Location Variability

 Mean
 82.15645
 Std Deviation
 24.53656

 Median
 83.00000
 Variance
 602.04283

 Mode
 60.20000
 Range
 98.50000

 Interquartile Range
 37.80000

NOTE: The mode displayed is the smallest of 3 modes with a count of 2.

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 82.15645 Std Dev Sigma 24.53656

Goodness-of-Fit Tests for Normal Distribution

Test ---- Value-----

 $\begin{array}{ccccccc} Kolmogorov-Smirnov & D & 0.06415837 & Pr>D & >0.150 \\ Cramer-von Mises & W-Sq & 0.04640869 & Pr>W-Sq & >0.250 \\ Anderson-Darling & A-Sq & 0.28258419 & Pr>A-Sq & >0.250 \\ & Parameters for Lognormal Distribution & Parameters for Lognor$

Threshold Theta 0
Scale Zeta 4.360459
Shape Sigma 0.322349
Mean 82.46825
Std Dev 27.28929

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Kolmogorov-Smirnov D 0.10132484 Pr > D 0.113 Cramer-von Mises W-Sq 0.09662889 Pr > W-Sq 0.125 Anderson-Darling A-Sq 0.59715939 Pr > A-Sq 0.119

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 91.0848
Shape C 3.786947
Mean 82.30549
Std Dev 24.26081

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Value-----

Cramer-von Mises W-Sq 0.04026210 Pr > W-Sq >0.250Anderson-Darling A-Sq 0.24437811 Pr > A-Sq >0.250

The UNIVARIATE Procedure Variable: estar 10.0 Hz

Moments

N 62 Sum Weights Mean 83.8387097 Sum Observations 5198 **Std Deviation** 25.0797244 Variance 628.992575 Skewness 0.04089549 Kurtosis -0.7006048 474162.16 Corrected SS Uncorrected SS 38368.5471 Coeff Variation 29.9142538 Std Error Mean 3.18512818

Basic Statistical Measures

Location Variability

 Mean
 83.83871
 Std Deviation
 25.07972

 Median
 83.15000
 Variance
 628.99258

 Mode
 . Range
 103.30000

 Interquartile Range
 38.80000

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Student's t t 26.32193 Pr > |t| < .0001Sign M 31 Pr >= |M| < .0001Signed Rank S 976.5 Pr >= |S| < .0001

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 83.83871 Std Dev Sigma 25.07972

Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic---- P Value-----

Kolmogorov-Smirnov D 0.07933165 Pr > D > 0.150Cramer-von Mises W-Sq 0.04215164 Pr > W-Sq >0.250 Anderson-Darling A-Sq 0.31214487 Pr > A-Sq >0.250

Parameters for Lognormal Distribution

Threshold Theta 0
Scale Zeta 4.380063
Shape Sigma 0.325821
Mean 84.19564
Std Dev 28.17716

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 92.93645
Shape C 3.777766
Mean 83.96732
Std Dev 24.80494

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Value-----

Cramer-von Mises W-Sq 0.03745174 Pr > W-Sq >0.250Anderson-Darling A-Sq 0.28262365 Pr > A-Sq >0.250

The UNIVARIATE Procedure Variable: estar 25.0 Hz

Moments

N 62 Sum Weights Mean 92.3306452 Sum Observations 5724.5 **Std Deviation** 37.0172294 Variance 1370.27527 Skewness 1.79088158 Kurtosis 4.55105856 612133.57 Corrected SS Uncorrected SS 83586.7918 Coeff Variation 40.0920294 Std Error Mean 4.70119284

Basic Statistical Measures

Location Variability

 Mean
 92.33065
 Std Deviation
 37.01723

 Median
 87.25000
 Variance
 1370

 Mode
 83.70000
 Range
 199.50000

 Interquartile Range
 39.80000

NOTE: The mode displayed is the smallest of 3 modes with a count of 2.

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Student's t t 19.63983 Pr > |t| < .0001Sign M 31 Pr >= |M| < .0001Signed Rank S 976.5 Pr >= |S| < .0001

Parameters for Normal Distribution

Parameter Symbol Estimate

Mean Mu 92.33065 Std Dev Sigma 37.01723

Goodness-of-Fit Tests for Normal Distribution

Test ---- Value-----

 $\begin{array}{cccccc} Kolmogorov-Smirnov & D & 0.13900007 & Pr>D & <0.010 \\ Cramer-von Mises & W-Sq & 0.29676684 & Pr>W-Sq & <0.005 \\ Anderson-Darling & A-Sq & 2.06508708 & Pr>A-Sq & <0.005 \\ & Parameters for Lognormal Distribution & & & & & \\ \end{array}$

Threshold Theta 0
Scale Zeta 4.458921
Shape Sigma 0.359555
Mean 92.16323
Std Dev 34.23815

Goodness-of-Fit Tests for Lognormal Distribution

Test ---- Value-----

Kolmogorov-Smirnov D 0.07586343 Pr > D >0.150 Cramer-von Mises W-Sq 0.04381118 Pr > W-Sq >0.500 Anderson-Darling A-Sq 0.35843326 Pr > A-Sq 0.457

Parameters for Weibull Distribution

Parameter Symbol Estimate

Threshold Theta 0
Scale Sigma 103.8658
Shape C 2.561806
Mean 92.21539
Std Dev 38.60632

Goodness-of-Fit Tests for Weibull Distribution

Test ---- Value-----

GENERAL LINEAR MODEL - REGRESSION AASHOT T283

The SAS System

09:38 Friday, July 28, 2006 127

The GLM Procedure

Class Level Information

Class	Levels Values				
grad	2 01				
nmas	3 012				
traf	3 012				
poly	2 01				
agg	3 012				
k	2 01				
ac	2 01				
faa	2 01				
rap	4 0123				

Number of Observations Read 105 Number of Observations Used 80

The SAS System 09:38 Friday, July 28, 2006 128

The GLM Procedure

Dependent Variable: tsr

Sum of					
Source	D	F Squares	Mean Square	F Value $Pr > F$	
Model	1	4 5174.25688	369.58978	3.50 0.0003	
Error	65	6870.63700	105.70211		
Corrected Total 79 12044.89388					
	R-Square	Coeff Var R	oot MSE tsr l	Mean	
	0.429581	11.07182 10	0.28115 92.85	5875	
Source	D	F Type I SS	Mean Square	F Value Pr > F	
grad nmas traf poly agg k ac faa rap	1 2 2 1 2 1 1 1 3	614.550361 629.918099 657.623067 1146.676766 260.459703 179.168042	226.787042 20.143972 307.275181 629.918099 328.811533 1146.676766 260.459703 179.168042 472.928617	2.91 0.0618 5.96 0.0174 3.11 0.0513 10.85 0.0016 2.46 0.1213 1.70 0.1975	
Source	D	F Type III SS	Mean Square	F Value Pr > F	
grad nmas traf poly agg k ac faa	2 1 1 1	1165.367405 1463.532377 1187.556818 1869.826118 1816.637940 684.352000 291.852800 953.285950	731.766189 593.778409 1869.826118 908.318970 684.352000 291.852800 953.285950	6.92 0.0019 5.62 0.0056 17.69 <.0001 8.59 0.0005 6.47 0.0133 2.76 0.1014 9.02 0.0038	
rap	3	1418.785851	472.928617	4.47 0.0064	

Dynamic Modulus

The SAS System 11:01 Friday, July 28, 2006 24

The GLM Procedure

Class Level Information

Class	Levels Values	
grad	2 01	
nmas	3 012	
traf	3 012	
poly	2 01	
agg	3 012	
k	2 01	
ac	2 01	
faa	2 01	
rap	4 0123	
freq	6 012345	
Number of Observations Read Number of Observations Used		372 288

The SAS System 11:01 Friday, July 28, 2006 25

The GLM Procedure

Dependent Variable: estar

Sum of						
Source	D	F Squares	Mean Square	F Value $Pr > F$		
Model	19	9 54938.7583	2891.5136	5.59 <.0001		
Error	268	138719.8074	517.6112			
Corrected Total 287 193658.5658						
	R-Square	Coeff Var Ro	oot MSE estar	Mean		
	0.283689	25.33635 22	2.75107 89.79	9618		
Source	D	F Type I SS	Mean Square	F Value $Pr > F$		
grad	1	293.88334	293.88334	0.57 0.4518		
nmas	2		1273.33125			
traf	2	13922.15758	6961.07879	13.45 < .0001		
poly	1	1808.01875	1808.01875	3.49 0.0627		
agg	2	11448.72186	5724.36093	11.06 < .0001		
k	1	8819.90288	8819.90288	17.04 < .0001		
ac	1	36.25349	36.25349 0.	07 0.7915		
faa		165.21534		0.32 0.5726		
rap		7971.68895				
freq	5	7926.25366	1585.25073	3.06 0.0105		
Source	D	F Type III SS	Mean Square	F Value Pr > F		
grad	1	2288.290932	2288.290932	4.42 0.0364		
nmas	2	3637.787637	1818.893818	3.51 0.0312		
traf	2	1179.722080	589.861040	1.14 0.3215		
poly	1	1943.952196	1943.952196	3.76 0.0537		
agg	2	2485.267833	1242.633916	2.40 0.0926		
k	1	11.793185	11.793185	0.02 0.8801		
ac	1	3220.128290	3220.128290	6.22 0.0132		
faa	1	3411.955796	3411.955796	6.59 0.0108		
rap	3	7412.616266	2470.872089	4.77 0.0029		
freq	5	7926.253657	1585.250731	3.06 0.0105		

REFERENCES

AASHTO TP48 (1997) Standard Test Procedure for Viscosity Determination of Asphalt Binders Using Rotational Viscometer. *Standard Specifications for Transportation Materials and Methods and Sampling and Testing Part II: Tests.* Washington D.C.

AASHTO T165-55. (1997) Effect of Water on Cohesion of Compacted Bituminous Mixtures. Standard Specifications for Transportation Materials and Methods and Sampling and Testing Part II: Tests. Washington D.C.

AASHTO T166-93. (1997) Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface-Dry Specimens. *Standard Specifications for Transportation Materials and Methods and Sampling and Testing Part II: Tests.* Washington D.C.

AASHTO T182-84. (1997) Coating and Stripping of Bitumen-Aggregate Mixtures. *Standard Specifications for Transportation Materials and Methods and Sampling and Testing Part II: Tests.* Washington D.C.

AASHTO T209-94. (1997) Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures. *Standard Specifications for Transportation Materials and Methods and Sampling and Testing Part II: Tests.* Washington D.C.

AASHTO T269-94. (1997) % Air Voids in Compacted Dense and Open Bituminous Paving Mixtures. *Standard Specifications for Transportation Materials and Methods and Sampling and Testing Part II: Tests*. Washington D.C.

AASHTO T283-89. (1993) Resistance of Compacted Bituminous Mixture to Moisture Induced Damage. *Standard Specifications for Transportation Materials and Methods and Sampling and Testing Part II: Tests.* Washington D.C.

ASTM D5. (2004) Standard Test Method for Penetration of Bituminous Materials. *Annual Book of ASTM Standards* 4.03. West Conshohocken, PA: ASTM International.

ASTM D140. (2004) Standard Practice for Sampling Bituminous Materials. *Annual Book of ASTM Standards* 4.03. West Conshohocken, PA: ASTM International.

ASTM D1075. (2004) Standard Test Method for Effect of Water on Compressive Strength of Compacted Bituminous Mixtures. *Annual Book of ASTM Standards* 4.03. West Conshohocken, PA: ASTM International.

ASTM D2041. (2004) Standard Test Method for Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures. *Annual Book of ASTM Standards* 4.03. West Conshohocken, PA: ASTM International.

ASTM D2172. (2004) Standard Test Method for Quantitative Extraction of Bitumen from Bituminous Paving Mixtures. *Annual Book of ASTM Standards* 4.03. West Conshohocken, PA: ASTM International.

ASTM D2726. (2004) Standard Test Method for Bulk Specific Gravity and Density of Non-Absorptive Compacted Bituminous Mixtures. *Annual Book of ASTM Standards* 4.03. West Conshohocken, PA: ASTM International.

ASTM D4867. (2004) Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures. *Annual Book of ASTM Standards* 4.03. West Conshohocken, PA: ASTM International.

ASTM C702. (2004) Standard Practice for Reducing Samples of Aggregate to Testing Size. *Annual Book of ASTM Standards* 4.02. West Conshohocken, PA: ASTM International.

Alam, Muhammad Murshed; Tandon, Vivek; Nazarian, Soheil; and Tahmoressi; Maghsoud. "Identification of Moisture-Susceptible Asphalt Concrete Mixes Using Modified Environmental Conditioning System." *Transportation Research Record 1630*, TRB, National Highway Research Council, Washington, D.C., 1998, pp. 106–116.

Al-Swailmi, Saleh and Terrel, Ronald. "Evaluation of Water Damage of Asphalt Concrete Mixtures Using the Environmental Conditioning System (ECS)." *Journal of the Association of Asphalt Paving Technologists*, Vol. 61, 1992a, pp. 405–435.

Al-Swailmi, Saleh and Terrel, Ronald. "Evaluation of the Environmental Conditioning System (ECS) with AASHTO T-283." *Journal of the Association of Asphalt Paving Technologists*, Vol. 61, 1992b, pp. 150–171.

Al-Swailmi, Saleh; Scholz, Todd V.; and Terrel, Ronald L. "Development and Evaluation of Test System to Induce and Monitor Moisture Damage to Asphalt Concrete Mixtures." *Transportation Research Record 1353*, TRB, National Highway Research Council, Washington, D.C., 1992c, pp. 39–45.

APA User's Manual 5.11.01. Pavement Technology, Inc, 2002.

Aschenbrener, T.; McGennis, R.B; and Terrel, R.L. "Comparison of Several Moisture Susceptibility Tests to Pavements of Known Field Performance." *Journal of the Association of Asphalt Paving Technologists*, Vol. 64, 1995, pp. 163–208.

Asphalt Institute. *Cause and Prevention of Stripping in Asphalt Pavements*. Educational Series No. 10, College Park, Md. 1981.

Asphalt Institute. Superpave Mix Design. Superpave Series No. 2. 2001.

Barak, John, Michigan Department of Transportation Bituminous Engineer, Email correspondence, Fall 2005.

Barcena, R., Epps Martin, A., and D. Hazlett. "Performance-Graded Binder Specification for Surface Treatments." *Transportation Research Record 1810*, National Highway Research Council, Washington D.C., 2002.

Bausano, J.P., Kvasnak, A.N., and R.C. Williams, "Transitioning Moisture Susceptibility Testing to Accommodate Superpave Gyratory Compaction" Canadian Technical Asphalt Association 2006 Conference, Charlottetown, Prince Edward Island, 2006.

Bhasin, Amit; Masad, Eyad; Little, Dallas; and Lytton, Robert. "Limits of Adhesive Bond Energy for Improved Resistance to Hot Mix Asphalt to Moisture Damage." *Transportation Research Board CD-ROM.* 85th Annual Meeting, January 22-26, 2006.

Birgisson, Bjorn; Roque, Reynaldo; and Page, Gale C. "Evaluation of Water Damage Using Hot Mix Asphalt Fracture Mechanics." *Association of Asphalt Paving Technologists* CD-ROM. 2003.

Birgisson, B, G. Sholar, R. Roque, "Evaluation of Predicted Dynamic Modulus for Florida Mixtures," Transportation Research Board CD-ROM. 84th Annual Meeting, January 9-13, 2005.

Bonaquist, Ramon and Christensen, Donald. *NCHRP Report 513: Simple Performance Tester for Superpave Mix Design: First Article Development and Evaluation*. Transportation Research Board, National Highway Research Council, Washington D.C. 2003.

Brown, E.R.; Kandhal, P.S.; Zhang, J. "Performance Testing for Hot Mix Asphalt," National Center for Asphalt Technology (NCAT) Report 2001-05, 2001.

California Test 302. "Method of Test for Film Stripping." State of California Department of Transportation. 1999.

California Test 307. "Method of Test for Moisture Vapor Susceptibility of Bituminous Mixtures." State of California Department of Transportation. 2000.

Cheng, DingXin; Little, Dallas N.; Lytton, Robert L.; Holste, James C. "Surface Energy Measurements of Asphalt and Its Application to Predicting Fatigue and Healing in Asphalt Mixtures." *Transportation Research Record 1810*, TRB, National Highway Research Council, Washington, D.C., 2002, pp. 44–53.

Cheng, DingXin; Little, Dallas N.; Lytton, Robert L.; Holste, James C. "Moisture Damage Evaluation of Asphalt Mixtures by Considering Both Moisture Diffusion and Repeated-Load Conditions." *Transportation Research Record 1832*, TRB, National Highway Research Council, Washington, D.C., 2003, pp. 42–49.

Choubane, Bouzid; Page, Gale; and Musselman, James. "Effects of Water Saturation Level on Resistance of Compacted Hot-Mix Asphalt Samples to Moisture-Induced Damage."

Transportation Research Record 1723, TRB, National Highway Research Council, Washington, D.C., 2000, pp. 97–106.

Cooley, L.A., P.S. Kandhal, M.S. Buchanan, F. Fee, and A. Epps, "Loaded Wheel Testers in the United States: State of the Practice," Transportation Research E-Circular, Number E-C016, Transportation Research Board, Washington, D.C., July 2000.

Coplantz, John and Newcomb, David. "Water Sensitivity Test Methods for Asphalt Concrete Mixtures: A Laboratory Comparison." *Transportation Research Record 1171*, TRB, National Highway Research Council, Washington, D.C., 1988, pp. 44–50.

Cross, S.A., Voth, D.M., and G.A. Fager, "Effects of Sample Preconditioning on Asphalt Pavement Analyzer Wet Rut Depths," Mid-Continent Transportation Symposium 2000 Proceedings, 2000.

Curtis, C.W.; Lytton, Robert L.; and Brannan, C.J. "Influence of Aggregate Chemistry on the Adsorption and Desorption of Asphalt." *Transportation Research Record 1362*, TRB, National Highway Research Council, Washington, D.C., 1992, pp. 1–9.

Curtis, C.W.; Ensley, K; and Epps, J. "Fundamental Properties of Asphalt-Aggregate Interactions Including Adhesion and Absorption." SHRP-A-341. Strategic Highway Research Program, National Highway Research Council, Washington, D.C., 1993.

DATAPAVE, http://www.datapave.com, LTPP DataPave Online 2004.

Dongre, Raj. Personal Communication on June 26, 2006.

Epps Martin, A. and D.W. Park, "Use of the Asphalt Pavement Analyzer and Repeated Simple Shear Test at Constant Height to Augment Superpave Volumetric Mix Design," Journal of Transportation Engineering, Volume 129, Issue 5, 2003.

Epps, J.; Sebaaly, Peter; Penaranda, Jorge; Maher, Michele; McCann, Martin; and Hand Adam. *NCHRP 444: Compatibility of a Test for Moisture-Induced Damage with Superpave Volumetric Mix Design*. Transportation Research Board, National Highway Research Council, Washington, D.C. 2000.

Ford, M.C.; Manke, P.G.; and O'Bannon, C.E. "Quantitative Evaluation of Stripping by the Surface Reaction Test." *Transportation Research Record* 515, TRB, National Highway Research Council, Washington, D.C., 1974, pp. 40–54.

Fromm, H.J. The Mechanisms of Asphalt Stripping from Aggregate Surfaces. *Journal of the Association of Asphalt Paving Technologists*, Vol. 43, 1974, pp 191–223.

Goode, F.F. "Use of Immersion Compression Test in Evaluating and Designing Bituminous Paving Mixtures." In American Society of Testing and Materials (ASTM) Special Technical Publication (STP) 252, 1959, pp. 113–126.

Graf, Peter. "Factors Affecting Moisture Susceptibility of Asphalt Concrete Mixes." *Journal of the Association of Asphalt Paving Technologists*, Vol. 55, 1986, pp. 175 –204.

Hicks, Gary. *NCHRP 175: Moisture Damage in Asphalt Concrete*. Transportation Research Board, National Highway Research Council, Washington, D.C. 1991.

IPC Global. UTM 38 Dynamic Modulus Software Package, Version 1.01, 2000a.

IPC Global. UTM 19 Dynamic Creep Software Package, Version 1.0, 2000b.

Isacsson, W. and Jorgensen, T. Laboratory Methods for Determination of the Water Susceptibility of Bituminous Pavements. VIT Report, Swedish Road and Traffic Research Institute, No. 324A, 1987.

Jackson, N.M. and C.D. Baldwin, "Evaluation of the Asphalt Pavement Analyzer to Predict the Relative Rutting Susceptibility of HMA in Tennessee," International Conference on Accelerated Pavement Testing October 18-20, 1999 Dissertation Number CS6-3, 1999.

Jimenez, R.A. "Testing for Debonding of Asphalt from Aggregates." *Transportation Research Record* 515, TRB, National Highway Research Council, Washington, D.C., 1974, pp. 1–17.

Johnston, A.G., Yeung, K., and D. Tannahill, "Use of Asphalt Pavement Analyzer Testing for Evaluating Premium Surfacing Asphalt Mixtures for Urban Roadways," 2005 Annual Conference of the Transportation Association of Canada, 2005.

Kandhal, P. "Field and Laboratory Investigation of Stripping in Asphalt Pavements: State of the Art Report." *Transportation Research Record 1454*, TRB, National Highway Research Council, Washington, D.C., 1994, pp. 36–47.

Kanitpong, K. and H.U. Bahia, "Role of Adhesion and Thin Film Tackiness of Asphalt Binders in Moisture Damage of HMA." *Journal of the Association of Asphalt Paving Technologists*, Vol. 72, 2003, pp 502–528.

Kanitpong, Kunnawee and Bahia, Hussain. "Evaluation of HMA Moisture Damage in Wisconsin as it Related to Pavement Performance." Transportation Research Board CD-ROM. 85th Annual Meeting, January 22-26, 2006a.

Kanitpong, Kunnawee and Bahia, Hussain. "Relating Adhesion and Cohesion of Asphalts to Effect of Moisture ON Asphalt Mixtures' Laboratory Performance." Transportation Research Board CD-ROM. 85th Annual Meeting, January 22-26, 2006b.

Kennedy, Thomas W; Roberts, Freddy, L.; and Lee, Kang W. "Evaluation of the Moisture Effects on Asphalt Concrete Mixtures." *Transportation Research Record 911*, TRB, National Highway Research Council, Washington, D.C., 1983, pp. 134–143.

Kennedy, Thomas W; Roberts, Freddy, L.; and Lee, Kang W. "Evaluating Moisture Susceptibility of Asphalt Mixtures Using the Texas Boiling Test." *Transportation Research Record 968*, TRB, National Highway Research Council, Washington, D.C., 1984a, pp. 45–54,

Kennedy, T.W. and W.V. Ping, "Comparison Study of Moisture Damage Test Methods for Evaluating Antistripping Treatments in Asphalt Mixtures." *Transportation Research Record* 1323, TRB, National Highway Research Council, Washington D.C., 1984b. pp 94–111.

Kvasnak, A.N., "Development and Evaluation of Test Procedures to Identify Moisture Damage Prone Hot Mix Asphalt Pavements," Ph.D Dissertation, Iowa State University, 2006.

Little, Dallas N. and Jones IV, David R. "Chemical and Mechanical Processes of Moisture Damage in Hot-Mix Asphalt Pavements." Moisture Sensitivity of Asphalt Pavements A National Seminar. February 4-6, 2003.

Lottman, R.P. NCHRP 192: Predicting Moisture-Inducted Damage to Asphaltic Concrete. Transportation Research Board, National Highway Research Council, Washington, D.C. 1978.

Lottman, R.P. NCHRP 246: Predicting Moisture-Inducted Damage to Asphaltic Concrete – Field Evaluation. Transportation Research Board, National Highway Research Council, Washington, D.C. 1982.

Lottman, Robert P.; Chen, R.P.; Kumar, K.S.; and Wolf, L.W. "A Laboratory Test System for Prediction of Asphalt Concrete Moisture Damage." *Transportation Research Record* 515, TRB, National Highway Research Council, Washington, D.C., 1974, pp. 18–26.

Lottman, Robert P. "Laboratory Test Method for Predicting Moisture-Induced Damage to Asphalt Concrete." *Transportation Research Record 843*, TRB, National Highway Research Council, Washington, D.C., 1982, pp. 88–95.

Mack, C. *Bituminous Materials*, Vol. 1 (A Holberg, ed.), Interscience Publishers, New York. 1964

Majidzadeh, K. and Brovold, F.N. "Special Report 98: State of the Art: Effect of Water on Bitumen-Aggregate Mixtures." *Highway Research Board (HRB)*, National Research Council, Washington, D.C. 1968.

Mallick, R.B, Gould, J.S., Bhattacharjee, S., Regimand, A., James, L.H., and E.R. Brown, "Development of a Rational Procedure for Evaluation of Moisture Susceptibility of Asphalt Paving Mixes," 82nd Annual Meeting of the Transportation Research Board, Washington, D.C., 2003.

Masad, Eyad; Zollinger, Corey; Bulut, Rifat; Little, Dallas; and Lytton, Robert. "Characterization of HMA Moisture Damage Using Surface Energy and Fracture Properties." *Association of Asphalt Paving Technologists* CD-ROM. 2006.

NCHRP 9-34. Improved Conditioning Procedure for Predicting the Moisture Susceptibility of HMA Pavements, National Cooperative Highway Research Program, March 2002.

Petersen, J.C., H. Plancher, E.K. Ensley, R.L. Venable, and G. Miyake, "Chemistry of Asphalt-Aggregate Interaction: Relationship with Pavement Moisture-Damage Prediction Test." *Transportation Research Record* 843, TRB, National Highway Research Council, Washington D.C., 1982. pp 95–104.

Plancher, H.; Miyake, G.; Venable, R.L.; and Peterson, J.C. "A Simple Laboratory Test to Indicate Moisture Susceptibility of Asphalt-Aggregate Mixtures to Moisture Damage During Repeated Freeze-Thaw Cycling." *Canadian Technical Asphalt Association Proceedings*, Vol. 25, 1980, pp. 247–262.

Roberts, Freddy L.; Kandhal, Prithvi S.; Brown, E. Ray; Lee, Dah-Yinn; and Kennedy, Thomas W. *Hot Mix Asphalt Materials, Mixture Design, and Construction*. 2nd Ed. 1996.

Robinette, Christopher. "Testing Wisconsin Asphalt Mixtures for the 2002 AASHTO Mechanistic Design Guide." Master Thesis, Michigan Technological University, 2005.

Romero, F.L. and Stuart, K.D. "Evaluating Accelerated Rut Testers." *Public Roads*, Vol. 62, No. 1, July-August, pp 50–54. 1998.

Rottermond, Matthew P., "Development of a Prototype Moisture Sensitivity Test for Asphalt Binder." M.S. Thesis Michigan Technological University, 2004.

SAS Institute, Inc. SAS for Windows XP Version 9.1.3, 2006.

Scherocman, James; Mesch, Keith; and Proctor, J. Joseph. "The Effect of Multiple Freeze-Thaw Cycle Conditioning on the Moisture Damage of Asphalt Concrete Mixtures." *Journal of the Association of Asphalt Paving Technologists*, Vol. 55, 1986, pp. 213–228.

Scholz, T.V. and S.F. Brown, "Rheological Characteristics of Bitumen in Contact with Mineral Aggregate (With Discussion)," Journal of the Association of Asphalt Paving Technologists, Volume 65, Bookcrafters Inc., Chelsea, MI, 1996.

Scholz, T.V.; Terrel, R.L.; Al-Joaib, A; and Bea, J. "Water Sensitivity: Binder Validation." SHRP-A-402. Strategic Highway Research Program, National Research Council, Washington, D.C., 1994.

Scott, J.A.N. "Adhesion and Disbonding Mechanisms of Asphalt Used in Highway Construction and Maintenance." *Journal of the Association of Asphalt Paving Technologists*, Vol. 47, 1978. pp19–44.

Shatnawi, S; Nagarajaiah, M.; and Harvey, J. "Moisture Sensitivity Evaluation of Binder-Aggregate Mixtures." *Transportation Research Record 1492*, TRB, National Highway Research Council, Washington, D.C., 1995, pp. 71–84.

Solaimanian, Mansour; Harvey, John; Tahmoressi, Maghsoud; and Tandon, Vivek. "Test Methods to Predict Moisture Sensitivity of Hot-Mix Asphalt Pavements." *Moisture Sensitivity of Asphalt Pavements A National Seminar*. February 4-6, 2003.

Solaimanian, Mansour; Fedor, David; Bonaquist, Ramon; Soltani, Ali; and Tandon, Vivek. "Simple Performance Test for Moisture Damage Prediction in Asphalt Concrete." *Association of Asphalt Paving Technologists CD-ROM.* 2006.

Stroup-Gardiner, Mary and Epps, J. "Laboratory Tests for Assessing Moisture Damage of Asphalt Concrete Mixtures." *Transportation Research Record 1353*, TRB, National Highway Research Council, Washington, D.C., 1992, pp. 15–23.

Tandon, Vivek; Alam, Muhammad Murshed; Nazarian, Soheil; and Vemuri, Nalini. "Significance of Conditioning Parameters Affecting Distinction of Moisture Susceptible Asphalt Concrete Mixtures in the Laboratory." *Journal of the Association of Asphalt Paving Technologists*, Vol. 67, 1998, pp. 334–353.

Tarrer, A.R. and Wagh, V. *The Effect of the Physical and Chemical Characteristics of the Aggregate on Bonding*. Strategic Highway Research Program, National Highway Research Council, Washington, DC., 1991.

Terrel, R.L. and Shute, W.J. Summary Report on Water Sensitivity. SHRP-A/IR-89-003. Strategic Highway Research Program, National Research Council, Washington D.C., 1989.

Terrel, R.L. and Al-Swailmi, S. "Final Report on Water Sensitivity of Asphalt-Aggregate Mixtures Test Development." SHRP-A-403. Strategic Highway Research Program, National Research Council, Washington, D.C., 1994.

Terrel, Ronald and Al-Swailmi, Saleh. "Role of Pessimum Voids Concept in Understanding Moisture Damage to Asphalt Concrete Mixtures." *Transportation Research Record 1386*, TRB, National Highway Research Council, Washington, D.C., 1993, pp. 31–37.

Thelen, Edmund. "Surface Energy and Adhesion Properties in Asphalt-Aggregate Systems." *Highway Research Board*, Volume 192, 1958, pp. 63–74.

Tunnicliff, D.G. and Root, R. 1982. *NCHRP Report 274: Use of Antistripping Additives in Asphaltic Concrete Mixtures. Laboratory phase*. TRB, National Highway Research Council, Washington, DC.

Tunnicliff, D.G. and R.E. Root. *NCHRP 373: Use of Antistripping Additives in Asphalt Concrete Mixtures – Field Evaluation*. Transportation Research Board, National Highway Research Council, Washington, D.C., 1995.

West, R., Zhang, J. and A. Cooley Jr., "Evaluation of Asphalt Pavement Analyzer for Moisture Sensitivty Testing," NCAT Report 04-04, Auburn, AL., 2003

Williams, R. Christopher. Iowa State University Associate Professor, Personal Conversion, Fall 2006.

Williams, R.C. and B.D. Prowell, "Comparison of Laboratory Wheel-Tracking Test Results with WesTrack Performance," Transportation Research Record 1681, Transportation Research Board, National Research Council, Washington, D.C., 1999.

Witczak, M.W.; Kaloush, K.; Pellinen, T.; El-Basyouny, M.; and Von Quintus, H. *NCHRP 465: Simple Performance Test for Superpave Mix Design*. Transportation Research Board, National Highway Research Council, Washington D.C., 2002.

Witczak, M.W. NCHRP Report 547: Simple Performance Tests: Summary of Recommended Methods and Database. Transportation Research Board, National Highway Research Council, Washington D.C., 2005.

Youtcheff, J.S. and Aurilio, V. "Moisture Sensitivity of Asphalt Binders: Evaluation and Modeling of the Pneumatic Adhesion Test Results." *Canadian Technical Asphalt Association Proceedings*, 1997.

Youtcheff, J.S.; Williams, R.C.; and Branthaver, J. "Evaluation of Relationships Between Moisture Sensitivity of Paving Asphalts, Modified Asphalt Binders, and Asphalt Components, and Their Chemistries." *American Chemical Society – Fuel Division, Symposium*, Vol. 34, 1998.